RESUMEN
Long-term severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) shedding was observed from the upper respiratory tract of a female immunocompromised individual with chronic lymphocytic leukemia and acquired hypogammaglobulinemia. Shedding of infectious SARS-CoV-2 was observed up to 70 days, and of genomic and subgenomic RNA up to 105 days, after initial diagnosis. The infection was not cleared after the first treatment with convalescent plasma, suggesting a limited effect on SARS-CoV-2 in the upper respiratory tract of this individual. Several weeks after a second convalescent plasma transfusion, SARS-CoV-2 RNA was no longer detected. We observed marked within-host genomic evolution of SARS-CoV-2 with continuous turnover of dominant viral variants. However, replication kinetics in Vero E6 cells and primary human alveolar epithelial tissues were not affected. Our data indicate that certain immunocompromised individuals may shed infectious virus longer than previously recognized. Detection of subgenomic RNA is recommended in persistently SARS-CoV-2-positive individuals as a proxy for shedding of infectious virus.
Asunto(s)
COVID-19/inmunología , Inmunodeficiencia Variable Común/inmunología , Leucemia Linfocítica Crónica de Células B/inmunología , SARS-CoV-2/aislamiento & purificación , Anciano , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , COVID-19/complicaciones , COVID-19/virología , Inmunodeficiencia Variable Común/sangre , Inmunodeficiencia Variable Común/complicaciones , Inmunodeficiencia Variable Común/virología , Femenino , Humanos , Leucemia Linfocítica Crónica de Células B/sangre , Leucemia Linfocítica Crónica de Células B/complicaciones , Leucemia Linfocítica Crónica de Células B/virología , Infecciones del Sistema Respiratorio/sangre , Infecciones del Sistema Respiratorio/complicaciones , Infecciones del Sistema Respiratorio/inmunología , Infecciones del Sistema Respiratorio/virología , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidadRESUMEN
Effective therapies to treat coronavirus disease 2019 (COVID-19) are urgently needed. While many investigational, approved, and repurposed drugs have been suggested as potential treatments, preclinical data from animal models can guide the search for effective treatments by ruling out those that lack efficacy in vivo. Remdesivir (GS-5734) is a nucleotide analogue prodrug with broad antiviral activity1,2 that is currently being investigated in COVID-19 clinical trials and recently received Emergency Use Authorization from the US Food and Drug Administration3,4. In animal models, remdesivir was effective against infection with Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus (SARS-CoV)2,5,6. In vitro, remdesivir inhibited replication of SARS-CoV-27,8. Here we investigate the efficacy of remdesivir in a rhesus macaque model of SARS-CoV-2 infection9. Unlike vehicle-treated animals, macaques treated with remdesivir did not show signs of respiratory disease; they also showed reduced pulmonary infiltrates on radiographs and reduced virus titres in bronchoalveolar lavages twelve hours after the first dose. Virus shedding from the upper respiratory tract was not reduced by remdesivir treatment. At necropsy, remdesivir-treated animals had lower lung viral loads and reduced lung damage. Thus, treatment with remdesivir initiated early during infection had a clinical benefit in rhesus macaques infected with SARS-CoV-2. Although the rhesus macaque model does not represent the severe disease observed in some patients with COVID-19, our data support the early initiation of remdesivir treatment in patients with COVID-19 to prevent progression to pneumonia.
Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Modelos Animales de Enfermedad , Macaca mulatta/virología , Neumonía Viral/prevención & control , Adenosina Monofosfato/farmacocinética , Adenosina Monofosfato/farmacología , Adenosina Monofosfato/uso terapéutico , Alanina/farmacocinética , Alanina/farmacología , Alanina/uso terapéutico , Animales , Betacoronavirus/genética , Betacoronavirus/patogenicidad , Líquido del Lavado Bronquioalveolar/virología , COVID-19 , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/fisiopatología , Análisis Mutacional de ADN , Progresión de la Enfermedad , Farmacorresistencia Viral , Femenino , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/fisiopatología , Pulmón/virología , Masculino , Pandemias , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/patología , Neumonía Viral/fisiopatología , Neumonía Viral/virología , SARS-CoV-2 , Prevención Secundaria , Factores de Tiempo , Carga Viral/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Esparcimiento de Virus/efectos de los fármacosRESUMEN
Chronic wasting disease (CWD) is a widely distributed prion disease of cervids with implications for wildlife conservation and also for human and livestock health. The structures of infectious prions that cause CWD and other natural prion diseases of mammalian hosts have been poorly understood. Here we report a 2.8 Å resolution cryogenic electron microscopy-based structure of CWD prion fibrils from the brain of a naturally infected white-tailed deer expressing the most common wild-type PrP sequence. Like recently solved rodent-adapted scrapie prion fibrils, our atomic model of CWD fibrils contains single stacks of PrP molecules forming parallel in-register intermolecular ß-sheets and intervening loops comprising major N- and C-terminal lobes within the fibril cross-section. However, CWD fibrils from a natural cervid host differ markedly from the rodent structures in many other features, including a ~ 180° twist in the relative orientation of the lobes. This CWD structure suggests mechanisms underlying the apparent CWD transmission barrier to humans and should facilitate more rational approaches to the development of CWD vaccines and therapeutics.
Asunto(s)
Microscopía por Crioelectrón , Ciervos , Enfermedad Debilitante Crónica , Enfermedad Debilitante Crónica/patología , Animales , Microscopía por Crioelectrón/métodos , Encéfalo/patología , Encéfalo/metabolismo , Encéfalo/ultraestructura , Priones/química , Priones/metabolismoRESUMEN
The human genome encodes for over 1,500 RNA-binding proteins (RBPs), which coordinate regulatory events on RNA transcripts. Most studies of RBPs have concentrated on their action on host protein-encoding mRNAs, which constitute a minority of the transcriptome. A widely neglected subset of our transcriptome derives from integrated retroviral elements, termed endogenous retroviruses (ERVs), that comprise â¼8% of the human genome. Some ERVs have been shown to be transcribed under physiological and pathological conditions, suggesting that sophisticated regulatory mechanisms to coordinate and prevent their ectopic expression exist. However, it is unknown how broadly RBPs and ERV transcripts directly interact to provide a posttranscriptional layer of regulation. Here, we implemented a computational pipeline to determine the correlation of expression between individual RBPs and ERVs from single-cell or bulk RNA-sequencing data. One of our top candidates for an RBP negatively regulating ERV expression was RNA-binding motif protein 4 (RBM4). We used photoactivatable ribonucleoside-enhanced cross-linking and immunoprecipitation to demonstrate that RBM4 indeed bound ERV transcripts at CGG consensus elements. Loss of RBM4 resulted in an elevated transcript level of bound ERVs of the HERV-K and -H families, as well as increased expression of HERV-K envelope protein. We pinpointed RBM4 regulation of HERV-K to a CGG-containing element that is conserved in the LTRs of HERV-K-10, -K-11, and -K-20, and validated the functionality of this site using reporter assays. In summary, we systematically identified RBPs that may regulate ERV function and demonstrate a role for RBM4 in controlling ERV expression.
Asunto(s)
Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , Procesamiento Postranscripcional del ARN , Proteínas de Unión al ARN/metabolismo , Sitios de Unión , Bases de Datos Genéticas , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Genoma Humano , Humanos , Inmunoprecipitación , ARN/genética , ARN/metabolismo , Motivos de Unión al ARN , Proteínas de Unión al ARN/genética , TranscriptomaRESUMEN
Interferon-ß has therapeutic efficacy in Multiple Sclerosis by reducing disease exacerbations and delaying relapses. Previous studies have suggested that the effects of type I IFN in Experimental Autoimmune Encephalomyelitis (EAE) in mice were targeted to myeloid cells. We used mice with a conditional deletion (cKO) of the type I IFN receptor (IFNAR) in T regulatory (Treg) cells to dissect the role of IFN signaling on Tregs. cKO mice developed severe EAE with an earlier onset than control mice. Although Treg cells from cKO mice were more activated, the activation status and effector cytokine production of CD4+Foxp3- T cells in the draining lymph nodes (dLN) was similar in WT and cKO mice during the priming phase. Production of chemokines (CCL8, CCL9, CCL22) by CD4+Foxp3- T cells and LN resident cells from cKO mice was suppressed. Suppression of chemokine production was accompanied by a substantial reduction of myeloid derived suppressor cells (MDSCs) in the dLN of cKO mice, while generation of MDSCs and recruitment to peripheral organs was comparable. This study demonstrates that signaling by type I IFNs in Tregs reduces their capacity to suppress chemokine production, with resultant alteration of the entire microenvironment of draining lymph nodes leading to enhancement of MDSC homing, and beneficial effects on disease outcome.
Asunto(s)
Encefalomielitis Autoinmune Experimental/inmunología , Interferón Tipo I/metabolismo , Esclerosis Múltiple/inmunología , Células Supresoras de Origen Mieloide/inmunología , Linfocitos T Reguladores/inmunología , Animales , Quimiocina CCL22/metabolismo , Quimiocina CCL8/metabolismo , Quimiocinas CC/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Humanos , Ganglios Linfáticos/metabolismo , Ganglios Linfáticos/patología , Proteínas Inflamatorias de Macrófagos/metabolismo , Ratones , Ratones Noqueados , Esclerosis Múltiple/patología , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/metabolismo , Transducción de Señal/genética , Transducción de Señal/inmunología , Linfocitos T Reguladores/metabolismoRESUMEN
The malaria parasite, Plasmodium falciparum, and the human immune system have coevolved to ensure that the parasite is not eliminated and reinfection is not resisted. This relationship is likely mediated through a myriad of host-parasite interactions, although surprisingly few such interactions have been identified. Here we show that the 33-kDa fragment of P. falciparum merozoite surface protein 1 (MSP1(33)), an abundant protein that is shed during red blood cell invasion, binds to the proinflammatory protein, S100P. MSP1(33) blocks S100P-induced NFκB activation in monocytes and chemotaxis in neutrophils. Remarkably, S100P binds to both dimorphic alleles of MSP1, estimated to have diverged >27 Mya, suggesting an ancient, conserved relationship between these parasite and host proteins that may serve to attenuate potentially damaging inflammatory responses.
Asunto(s)
Proteínas de Unión al Calcio/antagonistas & inhibidores , Proteína 1 de Superficie de Merozoito/fisiología , Proteínas de Neoplasias/antagonistas & inhibidores , Plasmodium falciparum/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Unión al Calcio/química , Cromatografía en Gel , Electroforesis en Gel de Poliacrilamida , Ensayo de Inmunoadsorción Enzimática , Humanos , Microscopía Confocal , Datos de Secuencia Molecular , Proteínas de Neoplasias/química , Homología de Secuencia de Aminoácido , Resonancia por Plasmón de SuperficieRESUMEN
It remains poorly understood how SARS-CoV-2 infection influences the physiological host factors important for aerosol transmission. We assessed breathing pattern, exhaled droplets, and infectious virus after infection with Alpha and Delta variants of concern (VOC) in the Syrian hamster. Both VOCs displayed a confined window of detectable airborne virus (24-48 hr), shorter than compared to oropharyngeal swabs. The loss of airborne shedding was linked to airway constriction resulting in a decrease of fine aerosols (1-10 µm) produced, which are suspected to be the major driver of airborne transmission. Male sex was associated with increased viral replication and virus shedding in the air. Next, we compared the transmission efficiency of both variants and found no significant differences. Transmission efficiency varied mostly among donors, 0-100% (including a superspreading event), and aerosol transmission over multiple chain links was representative of natural heterogeneity of exposure dose and downstream viral kinetics. Co-infection with VOCs only occurred when both viruses were shed by the same donor during an increased exposure timeframe (24-48 hr). This highlights that assessment of host and virus factors resulting in a differential exhaled particle profile is critical for understanding airborne transmission.
Asunto(s)
COVID-19 , SARS-CoV-2 , Cricetinae , Animales , Masculino , Mesocricetus , Aerosoles y Gotitas RespiratoriasRESUMEN
Complete genomes of Rickettsia rickettsii were sequenced with Illumina and PacBio technologies from low-passage isolates from ticks. These isolates were quality controlled for intact roaM, a regulator of actin-based motility that is negatively selected for in culture. The Sheila Smith strain was re-sequenced using the same methodology.
RESUMEN
Chlamydia trachomatis is an obligate intracellular bacterium that causes blinding trachoma and sexually transmitted disease. The chlamydial plasmid is a critical virulence factor in the pathogenesis of these diseases. Plasmid gene protein 4 (Pgp4) plays a major role in chlamydial virulence by regulating the expression of both chromosomal genes and Pgp3. Despite the importance of Pgp4 in mediating lytic exit from host cells the pathogenic mechanism by which it functions is unknown. CT084 is a highly conserved chromosomal gene with homology to phospholipase D. We showed CT084 expression is regulated by Pgp4 and expressed late in the chlamydial developmental cycle. To investigate the function of CT084 in chlamydial lytic exit from infected cells, we made a CT084 null strain (ct084::bla) by using Targetron. The ct084::bla strain grew normally in vitro compared to wild-type strain; however, the strain did not lyse infected cells and produced significantly less and smaller plaques. Collectively, our finding shows Pgp4-regulated CT084-mediated chlamydia lytic exit from infected host cells.
Asunto(s)
Infecciones por Chlamydia , Tracoma , Humanos , Chlamydia trachomatis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Plásmidos/genética , Fenotipo , Infecciones por Chlamydia/microbiologíaRESUMEN
Roseomonas mucosa is a bacterium that is found in the natural microbiota of human skin. Here, we present de novo sequence assemblies from R. mucosa isolated from the skin microflora of three healthy human volunteers that were used to treat atopic dermatitis patients.
RESUMEN
Roseomonas mucosa is associated with the normal skin microflora. Here, we present de novo sequence assemblies from R. mucosa isolates obtained from the skin lesions of three atopic dermatitis patients.
RESUMEN
The alternative sigma factor RpoS plays a central role in the critical host-adaptive response of the Lyme disease spirochete, Borrelia burgdorferi. We previously identified bbd18 as a negative regulator of RpoS but could not inactivate bbd18 in wild-type spirochetes. In the current study we employed an inducible bbd18 gene to demonstrate the essential nature of BBD18 for viability of wild-type spirochetes in vitro and at a unique point in vivo. Transcriptomic analyses of BBD18-depleted cells demonstrated global induction of RpoS-dependent genes prior to lysis, with the absolute requirement for BBD18, both in vitro and in vivo, circumvented by deletion of rpoS. The increased expression of plasmid prophage genes and the presence of phage particles in the supernatants of lysing cultures indicate that RpoS regulates phage lysis-lysogeny decisions. Through this work we identify a mechanistic link between endogenous prophages and the RpoS-dependent adaptive response of the Lyme disease spirochete.
Asunto(s)
Borrelia burgdorferi , Profagos , Garrapatas , Animales , Proteínas Bacterianas/metabolismo , Borrelia burgdorferi/virología , Regulación Bacteriana de la Expresión Génica , Profagos/genética , Factor sigma/metabolismo , Garrapatas/microbiología , Factores de Virulencia/metabolismo , Interacciones Huésped-PatógenoRESUMEN
Limited data is available on the effect of vaccination and previous virus exposure on the nature of SARS-CoV-2 transmission and immune-pressure on variants. To understand the impact of pre-existing immunity on SARS-CoV-2 airborne transmission efficiency, we perform a transmission chain experiment using naïve, intranasally or intramuscularly AZD1222 vaccinated, and previously infected hamsters. A clear gradient in transmission efficacy is observed: Transmission in hamsters vaccinated via the intramuscular route was reduced over three airborne chains (approx. 60%) compared to naïve animals, whereas transmission in previously infected hamsters and those vaccinated via the intranasal route was reduced by 80%. We also find that the Delta B.1.617.2 variant outcompeted Omicron B.1.1.529 after dual infection within and between hosts in naïve, vaccinated, and previously infected transmission chains, yet an increase in Omicron B.1.1.529 competitiveness is observed in groups with pre-existing immunity against Delta B.1.617.2. This correlates with an increase in the strength of the humoral response against Delta B.1.617.2, with the strongest response seen in previously infected animals. These data highlight the continuous need to improve vaccination strategies and address the additional evolutionary pressure pre-existing immunity may exert on SARS-CoV-2.
Asunto(s)
COVID-19 , Vacunas , Animales , Cricetinae , Humanos , COVID-19/prevención & control , ChAdOx1 nCoV-19 , SARS-CoV-2RESUMEN
It remains poorly understood how SARS-CoV-2 infection influences the physiological host factors important for aerosol transmission. We assessed breathing pattern, exhaled droplets, and infectious virus after infection with Alpha and Delta variants of concern (VOC) in the Syrian hamster. Both VOCs displayed a confined window of detectable airborne virus (24-48 h), shorter than compared to oropharyngeal swabs. The loss of airborne shedding was linked to airway constriction resulting in a decrease of fine aerosols (1-10µm) produced, which are suspected to be the major driver of airborne transmission. Male sex was associated with increased viral replication and virus shedding in the air. Next, we compared the transmission efficiency of both variants and found no significant differences. Transmission efficiency varied mostly among donors, 0-100% (including a superspreading event), and aerosol transmission over multiple chain links was representative of natural heterogeneity of exposure dose and downstream viral kinetics. Co-infection with VOCs only occurred when both viruses were shed by the same donor during an increased exposure timeframe (24-48 h). This highlights that assessment of host and virus factors resulting in a differential exhaled particle profile is critical for understanding airborne transmission.
RESUMEN
Omicron has demonstrated a competitive advantage over Delta in vaccinated people. To understand this, we designed a transmission chain experiment using naïve, intranasally (IN) or intramuscularly (IM) vaccinated, and previously infected (PI) hamsters. Vaccination and previous infection protected animals from disease and virus replication after Delta and Omicron dual challenge. A gradient in transmission blockage was observed: IM vaccination displayed moderate transmission blockage potential over three airborne chains (approx. 70%), whereas, IN vaccination and PI blocked airborne transmission in >90%. In naïve hamsters, Delta completely outcompeted Omicron within and between hosts after dual infection in onward transmission. Although Delta also outcompeted Omicron in the vaccinated and PI transmission chains, an increase in Omicron competitiveness was observed in these groups. This correlated with the increase in the strength of the humoral response against Delta, with the strongest response seen in PI animals. These data highlight the continuous need to assess the emergence and spread of novel variants in populations with pre-existing immunity and address the additional evolutionary pressure this may exert on the virus.
RESUMEN
BACKGROUND: Parasite-vector interactions are fundamental in the transmission of vector-borne diseases such as leishmaniasis. Leishmania development in the vector sand fly is confined to the digestive tract, where sand fly midgut molecules interact with the parasites. In this work we sequenced and analyzed two midgut-specific cDNA libraries from sugar fed and blood fed female Phlebotomus perniciosus and compared the transcript expression profiles. RESULTS: A total of 4111 high quality sequences were obtained from the two libraries and assembled into 370 contigs and 1085 singletons. Molecules with putative roles in blood meal digestion, peritrophic matrix formation, immunity and response to oxidative stress were identified, including proteins that were not previously reported in sand flies. These molecules were evaluated relative to other published sand fly transcripts. Comparative analysis of the two libraries revealed transcripts differentially expressed in response to blood feeding. Molecules up regulated by blood feeding include a putative peritrophin (PperPer1), two chymotrypsin-like proteins (PperChym1 and PperChym2), a putative trypsin (PperTryp3) and four putative microvillar proteins (PperMVP1, 2, 4 and 5). Additionally, several transcripts were more abundant in the sugar fed midgut, such as two putative trypsins (PperTryp1 and PperTryp2), a chymotrypsin (PperChym3) and a microvillar protein (PperMVP3). We performed a detailed temporal expression profile analysis of the putative trypsin transcripts using qPCR and confirmed the expression of blood-induced and blood-repressed trypsins. Trypsin expression was measured in Leishmania infantum-infected and uninfected sand flies, which identified the L. infantum-induced down regulation of PperTryp3 at 24 hours post-blood meal. CONCLUSION: This midgut tissue-specific transcriptome provides insight into the molecules expressed in the midgut of P. perniciosus, an important vector of visceral leishmaniasis in the Old World. Through the comparative analysis of the libraries we identified molecules differentially expressed during blood meal digestion. Additionally, this study provides a detailed comparison to transcripts of other sand flies. Moreover, our analysis of putative trypsins demonstrated that L. infantum infection can reduce the transcript abundance of trypsin PperTryp3 in the midgut of P. perniciosus.
Asunto(s)
Sangre , Carbohidratos , Perfilación de la Expresión Génica , Insectos Vectores/genética , Leishmania infantum , Phlebotomus/genética , Secuencia de Aminoácidos , Animales , Bases de Datos Genéticas , Femenino , Biblioteca de Genes , Insectos Vectores/clasificación , Insectos Vectores/citología , Insectos Vectores/enzimología , Microvellosidades/genética , Datos de Secuencia Molecular , Especificidad de Órganos , Estrés Oxidativo/genética , Phlebotomus/clasificación , Phlebotomus/citología , Phlebotomus/enzimología , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Secuencia de ADNRESUMEN
Borrelia burgdorferi, the etiological agent of Lyme disease, persists in nature through an enzootic cycle consisting of a vertebrate host and an Ixodes tick vector. The sequence motifs modified by two well-characterized restriction/modification (R/M) loci of B. burgdorferi type strain B31 were recently described, but the methylation profiles of other Lyme disease Borrelia bacteria have not been characterized. Here, the methylomes of B. burgdorferi type strain B31 and 7 clonal derivatives, along with B. burgdorferi N40, B. burgdorferi 297, B. burgdorferi CA-11, B. afzelii PKo, B. afzelii BO23, and B. garinii PBr, were defined through PacBio single-molecule real-time (SMRT) sequencing. This analysis revealed 9 novel sequence motifs methylated by the plasmid-encoded restriction/modification enzymes of these Borrelia strains. Furthermore, while a previous analysis of B. burgdorferi B31 revealed an epigenetic impact of methylation on the global transcriptome, the current data contradict those findings; our analyses of wild-type B. burgdorferi B31 revealed no consistent differences in gene expression among isogenic derivatives lacking one or more restriction/modification enzymes. IMPORTANCE The principal causative agent of Lyme disease in humans in the United States is Borrelia burgdorferi, while B. burgdorferi, B. afzelii, and B. garinii, collectively members of the Borrelia burgdorferi sensu lato species complex, cause Lyme disease in Europe and Asia. Two plasmid-encoded restriction/modification systems have been shown to limit the genetic transformation of B. burgdorferi type strain B31 with foreign DNA, but little is known about the restriction/modification systems of other Lyme disease Borrelia bacteria. This paper describes the methylation motifs present on genomic DNAs of multiple B. burgdorferi, B. afzelii, and B. garinii strains. Contrary to a previous report, we did not find evidence for an epigenetic impact on gene expression by methylation. Knowledge of the motifs recognized and methylated by the restriction/modification enzymes of Lyme disease Borrelia will facilitate molecular genetic investigations of these important human pathogens. Additionally, the similar motifs methylated by orthologous restriction/modification systems of Lyme disease Borrelia bacteria and the presence of these motifs within recombinogenic loci suggest a biological role for these ubiquitous restriction/modification systems in horizontal gene transfer.
Asunto(s)
Borrelia burgdorferi/genética , Epigenómica , Enfermedad de Lyme/microbiología , Motivos de Nucleótidos , Plásmidos/genética , Análisis de Secuencia de ADN , Animales , Borrelia burgdorferi/clasificación , ADN Bacteriano/genética , Humanos , Metilación , Plásmidos/metabolismoRESUMEN
The COVID-19 pandemic progresses unabated in many regions of the world. An effective antiviral against SARS-CoV-2 that could be administered orally for use following high-risk exposure would be of substantial benefit in controlling the COVID-19 pandemic. Herein, we show that MK-4482, an orally administered nucleoside analog, inhibits SARS-CoV-2 replication in the Syrian hamster model. The inhibitory effect of MK-4482 on SARS-CoV-2 replication is observed in animals when the drug is administered either beginning 12 h before or 12 h following infection in a high-risk exposure model. These data support the potential utility of MK-4482 to control SARS-CoV-2 infection in humans following high-risk exposure as well as for treatment of COVID-19 patients.
Asunto(s)
Antivirales/administración & dosificación , Tratamiento Farmacológico de COVID-19 , Citidina/análogos & derivados , Hidroxilaminas/administración & dosificación , SARS-CoV-2/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Administración Oral , Animales , COVID-19/virología , Chlorocebus aethiops , Citidina/administración & dosificación , Modelos Animales de Enfermedad , Humanos , Mesocricetus , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/fisiología , Células VeroRESUMEN
We investigated ChAdOx1 nCoV-19 (AZD1222) vaccine efficacy against SARS-CoV-2 variants of concern (VOCs) B.1.1.7 and B.1.351 in Syrian hamsters. We previously showed protection against SARS-CoV-2 disease and pneumonia in hamsters vaccinated with a single dose of ChAdOx1 nCoV-19. Here, we observed a 9.5-fold reduction of virus neutralizing antibody titer in vaccinated hamster sera against B.1.351 compared to B.1.1.7. Vaccinated hamsters challenged with B.1.1.7 or B.1.351 did not lose weight compared to control animals. In contrast to control animals, the lungs of vaccinated animals did not show any gross lesions. Minimal to no viral subgenomic RNA (sgRNA) and no infectious virus was detected in lungs of vaccinated animals. Histopathological evaluation showed extensive pulmonary pathology caused by B.1.1.7 or B.1.351 replication in the control animals, but none in the vaccinated animals. These data demonstrate the effectiveness of the ChAdOx1 nCoV-19 vaccine against clinical disease caused by B.1.1.7 or B.1.351 VOCs.
RESUMEN
ChAdOx1 nCoV-19/AZD1222 is an approved adenovirus-based vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) currently being deployed globally. Previous studies in rhesus macaques revealed that intramuscular vaccination with ChAdOx1 nCoV-19/AZD1222 provided protection against pneumonia but did not reduce shedding of SARS-CoV-2 from the upper respiratory tract. Here, we investigated whether intranasally administered ChAdOx1 nCoV-19 reduces detection of virus in nasal swabs after challenging vaccinated macaques and hamsters with SARS-CoV-2 carrying a D614G mutation in the spike protein. Viral loads in swabs obtained from intranasally vaccinated hamsters were decreased compared to control hamsters, and no viral RNA or infectious virus was found in lung tissue after a direct challenge or after direct contact with infected hamsters. Intranasal vaccination of rhesus macaques resulted in reduced virus concentrations in nasal swabs and a reduction in viral loads in bronchoalveolar lavage and lower respiratory tract tissue. Intranasal vaccination with ChAdOx1 nCoV-19/AZD1222 reduced virus concentrations in nasal swabs in two different SARS-CoV-2 animal models, warranting further investigation as a potential vaccination route for COVID-19 vaccines.