Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cytotherapy ; 17(2): 152-62, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25453724

RESUMEN

BACKGROUND AIMS: The discovery of regenerative and immunosuppressive capacities of mesenchymal stromal cells (MSCs) raises hope for patients with tissue-damaging or severe, treatment-refractory autoimmune disorders. We previously presented a method to expand human MSCs in a bioreactor under standardized Good Manufacturing Practice conditions. Now we characterized the impact of critical treatment conditions on MSCs with respect to immunosuppressive capabilities and proliferation. METHODS: MSC proliferation and survival after γ irradiation were determined by 5-carboxyfluorescein diacetate N-succinimidyl ester and annexinV/4',6-diamidino-2-phenylindole (DAPI) staining, respectively. T-cell proliferation assays were used to assess the effect of γ irradiation, passaging, cryopreservation, post-thaw equilibration time and hypoxia on T-cell suppressive capacities of MSCs. Quantitative polymerase chain reaction and ß-galactosidase staining served as tools to investigate differences between immunosuppressive and non-immunosuppressive MSCs. RESULTS: γ irradiation of MSCs abrogated their proliferation while vitality and T-cell inhibitory capacity were preserved. Passaging and long cryopreservation time decreased the T-cell suppressive function of MSCs, and postthaw equilibration time of 5 days restored this capability. Hypoxic culture markedly increased MSC proliferation without affecting their T-cell-suppressive capacity and phenotype. Furthermore, T-cell suppressive MSCs showed higher CXCL12 expression and less ß-galactosidase staining than non-suppressive MSCs. DISCUSSION: We demonstrate that γ irradiation is an effective strategy to abrogate MSC proliferation without impairing the cells' immunosuppressive function. Hypoxia significantly enhanced MSC expansion, allowing for transplantation of MSCs with low passage number. In summary, our optimized MSC expansion protocol successfully addressed the issues of safety and preservation of immunosuppressive MSC function after ex vivo expansion for therapeutic purposes.


Asunto(s)
Hipoxia de la Célula/fisiología , Proliferación Celular/efectos de la radiación , Rayos gamma/efectos adversos , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/efectos de la radiación , Adulto , Células Cultivadas , Quimiocina CXCL12/biosíntesis , Criopreservación , Fluoresceínas , Humanos , Terapia de Inmunosupresión/métodos , Inmunosupresores/efectos de la radiación , Activación de Linfocitos/inmunología , Activación de Linfocitos/efectos de la radiación , Células Madre Mesenquimatosas/citología , Persona de Mediana Edad , Linfocitos T/inmunología , beta-Galactosidasa/metabolismo
2.
Leuk Res ; 62: 56-63, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28985623

RESUMEN

Primary resistance to induction therapy is an unsolved clinical problem in acute myeloid leukemia (AML). Here we investigated drug resistance in AML at the level of cellular metabolism in order to identify early predictors of therapeutic response. Using extracellular flux analysis, we compared metabolic drug responses in AML cell lines sensitive or resistant to cytarabine or sorafenib after 24h of drug treatment to a small cell lung cancer (SCLC) cell line exposed to etoposide. Only drug-resistant AML cells maintained oxidative metabolism upon drug exposure while SCLC cells displayed an overall metabolic shift towards glycolysis, i.e. a Warburg effect to escape drug toxicity. Moreover, primary AML blasts displayed very low glycolytic activity, while oxygen consumption was readily detectable, indicating an essential role of oxidative pathways in the bioenergetics of AML blasts. In line with these observations, analysis of the mitochondrial membrane potential using tetramethylrhodamine ethyl ester staining and flow cytometry allowed for clear discrimination between drug sensitive and resistant AML cell line clones and primary blasts after 24h of treatment with cytarabine or sorafenib. Our data reveal a distinct metabolic phenotype of resistant AML cells and suggest that disrupting oxidative metabolism rather than glycolysis may enhance the cytotoxic effects of chemotherapy in AML.


Asunto(s)
Respiración de la Célula/fisiología , Resistencia a Antineoplásicos/fisiología , Leucemia Mieloide Aguda/metabolismo , Línea Celular Tumoral , Glucólisis/efectos de los fármacos , Glucólisis/fisiología , Humanos , Fosforilación Oxidativa/efectos de los fármacos
3.
Stem Cell Res Ther ; 8(1): 100, 2017 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-28446224

RESUMEN

BACKGROUND: Mesenchymal stem cells (MSCs) have entered the clinic as an Advanced Therapy Medicinal Product and are currently evaluated in a wide range of studies for tissue regeneration or in autoimmune disorders. Various efforts have been made to standardize and optimize expansion and manufacturing processes, but until now reliable potency assays for the final MSC product are lacking. Because recent findings suggest superior therapeutic efficacy of freshly administered MSCs in comparison with frozen cells, we sought to correlate the T-cell suppressive capacity of MSCs with their metabolic activity. METHODS: Human MSCs were obtained from patients' bone fragments and were employed in coculture with peripheral blood mononuclear cells (PBMCs) in an allogeneic T-cell proliferation assay to measure immunosuppressive function. Metabolic activity of MSCs was measured in real time in terms of aerobic glycolysis quantified by the extracellular acidification rate and mitochondrial respiration quantified by the oxygen consumption rate. RESULTS: We show that MSC-induced suppression of T-cell proliferation was highly dependent on individual healthy donors' lymphocytes. Moreover, coculture with PBMCs increased the glycolytic and respiratory activity of MSCs considerably in a PBMC donor-dependent manner. The twofold to threefold enhancement of cell metabolism was accompanied by higher T-cell suppressive capacities of MSCs. The cryoprotectant dimethyl sulfoxide decreased metabolic and immunosuppressive performances of MSCs while valproic acid (VPA) increased their glycolytic, respiratory and T-cell suppressive capacity. CONCLUSIONS: Functional fitness of MSCs can be determined by measuring metabolic activity and can be enhanced by exposure to VPA. Pretesting the increment of metabolic activity upon interaction of donor MSCs with patient T-cells provides a rational approach for an individualized potency assay prior to MSC therapy.


Asunto(s)
Inmunosupresores/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Ácido Valproico/farmacología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Dimetilsulfóxido/farmacología , Glucólisis/efectos de los fármacos , Humanos , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Linfocitos T/citología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología
4.
Methods Mol Biol ; 1416: 389-412, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27236685

RESUMEN

This chapter describes a method for GMP-compliant expansion of human mesenchymal stromal/stem cells (hMSC) from bone marrow aspirates, using the Quantum(®) Cell Expansion System from Terumo BCT. The Quantum system is a functionally closed, automated hollow fiber bioreactor system designed to reproducibly grow cells in either GMP or research laboratory environments. The chapter includes protocols for preparation of media, setup of the Quantum system, coating of the hollow fiber bioreactor, as well as loading, feeding, and harvesting of cells. We suggest a panel of quality controls for the starting material, the interim product, as well as the final product.


Asunto(s)
Reactores Biológicos , Técnicas de Cultivo de Célula/instrumentación , Materiales Manufacturados/normas , Células Madre Mesenquimatosas/citología , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Medios de Cultivo/química , Humanos , Control de Calidad , Teoría Cuántica
5.
Cancer Res ; 76(10): 3067-77, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26980768

RESUMEN

DNA-damaging anticancer drugs remain a part of metastatic melanoma therapy. Epigenetic reprogramming caused by increased histone deacetylase (HDAC) activity arising during tumor formation may contribute to resistance of melanomas to the alkylating drugs temozolomide, dacarbazine, and fotemustine. Here, we report on the impact of class I HDACs on the response of malignant melanoma cells treated with alkylating agents. The data show that malignant melanomas in situ contain a high level of HDAC1/2 and malignant melanoma cells overexpress HDAC1/2/3 compared with noncancer cells. Furthermore, pharmacologic inhibition of class I HDACs sensitizes malignant melanoma cells to apoptosis following exposure to alkylating agents, while not affecting primary melanocytes. Inhibition of HDAC1/2/3 caused sensitization of melanoma cells to temozolomide in vitro and in melanoma xenografts in vivo HDAC1/2/3 inhibition resulted in suppression of DNA double-strand break (DSB) repair by homologous recombination because of downregulation of RAD51 and FANCD2. This sensitized cells to the cytotoxic DNA lesion O(6)-methylguanine and caused a synthetic lethal interaction with the PARP-1 inhibitor olaparib. Furthermore, knockdown experiments identified HDAC2 as being responsible for the regulation of RAD51. The influence of class I HDACs on DSB repair by homologous recombination and the possible clinical implication on malignant melanoma therapy with temozolomide and other alkylating drugs suggests a combination approach where class I HDAC inhibitors such as valproic acid or MS-275 (entinostat) appear to counteract HDAC- and RAD51/FANCD2-mediated melanoma cell resistance. Cancer Res; 76(10); 3067-77. ©2016 AACR.


Asunto(s)
Resistencia a Antineoplásicos , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Melanoma/patología , Recombinasa Rad51/metabolismo , Neoplasias Cutáneas/patología , Animales , Apoptosis/efectos de los fármacos , Western Blotting , Proliferación Celular/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/antagonistas & inhibidores , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Técnica del Anticuerpo Fluorescente , Histona Desacetilasas/química , Histona Desacetilasas/genética , Recombinación Homóloga/efectos de los fármacos , Humanos , Técnicas para Inmunoenzimas , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID , ARN Mensajero/genética , Recombinasa Rad51/antagonistas & inhibidores , Recombinasa Rad51/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Piel/efectos de los fármacos , Piel/metabolismo , Piel/patología , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto , Melanoma Cutáneo Maligno
6.
PLoS One ; 10(4): e0123181, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25901794

RESUMEN

RAS mutations are frequently found among acute myeloid leukemia patients (AML), generating a constitutively active signaling protein changing cellular proliferation, differentiation and apoptosis. We have previously shown that treatment of AML patients with high-dose cytarabine is preferentially beneficial for those harboring oncogenic RAS. On the basis of a murine AML cell culture model, we ascribed this effect to a RAS-driven, p53-dependent induction of differentiation. Hence, in this study we sought to confirm the correlation between RAS status and differentiation of primary blasts obtained from AML patients. The gene expression signature of AML blasts with oncogenic NRAS indeed corresponded to a more mature profile compared to blasts with wildtype RAS, as demonstrated by gene set enrichment analysis (GSEA) and real-time PCR analysis of myeloid ecotropic viral integration site 1 homolog (MEIS1) in a unique cohort of AML patients. In addition, in vitro cell culture experiments with established cell lines and a second set of primary AML cells showed that oncogenic NRAS mutations predisposed cells to cytarabine (AraC) driven differentiation. Taken together, our findings show that AML with inv(16) and NRAS mutation have a differentiation gene signature, supporting the notion that NRAS mutation may predispose leukemic cells to AraC induced differentiation. We therefore suggest that promotion of differentiation pathways by specific genetic alterations could explain the superior treatment outcome after therapy in some AML patient subgroups. Whether a differentiation gene expression status may generally predict for a superior treatment outcome in AML needs to be addressed in future studies.


Asunto(s)
Diferenciación Celular , GTP Fosfohidrolasas/metabolismo , Leucemia Mieloide Aguda/patología , Proteínas de la Membrana/metabolismo , Anciano , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Estudios de Cohortes , Citarabina/farmacología , Citarabina/uso terapéutico , Femenino , GTP Fosfohidrolasas/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteínas de Homeodominio/genética , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Masculino , Proteínas de la Membrana/genética , Persona de Mediana Edad , Mutación , Células Mieloides/efectos de los fármacos , Células Mieloides/patología , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide , Proteínas de Neoplasias/genética , Proteínas de Fusión Oncogénica/genética , Proteínas ras/genética , Proteínas ras/metabolismo
7.
Cancer Res ; 74(19): 5585-96, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25125662

RESUMEN

DNA repair processes are a key determinant of the sensitivity of cancer cells to DNA-damaging chemotherapeutics, which may induce certain repair genes as a mechanism to promote resistance. Here, we report the results of a screen for repair genes induced in cancer cells treated with DNA crosslinking agents, which identified the translesion polymerase η (PolH) as a p53-regulated target acting as one defense against interstrand crosslink (ICL)-inducing agents. PolH was induced by fotemustine, mafosfamide, and lomustine in breast cancer, glioma, and melanoma cells in vitro and in vivo, with similar inductions observed in normal cells such as lymphocytes and diploid fibroblasts. PolH contributions to the protection against ICL-inducing agents were evaluated by its siRNA-mediated attenuation in cells, which elevated sensitivity to these drugs in all tumor cell models. Conversely, PolH overexpression protected cancer cells against these drugs. PolH attenuation reduced repair of ICL lesions as measured by host cell reactivation assays and enhanced persistence of γH2AX foci. Moreover, we observed a strong accumulation of PolH in the nucleus of drug-treated cells along with direct binding to damaged DNA. Taken together, our findings implicated PolH in ICL repair as a mechanism of cancer drug resistance and normal tissue protection.


Asunto(s)
Antineoplásicos/farmacología , ADN Polimerasa Dirigida por ADN/metabolismo , Regulación hacia Arriba , Animales , Línea Celular Tumoral , Replicación del ADN , Resistencia a Antineoplásicos , Humanos , Ratones , Ratones Endogámicos NOD , Proteína p53 Supresora de Tumor/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA