RESUMEN
Magnetically actuated robots have become increasingly popular in medical endoscopy over the past decade. Despite the significant improvements in autonomy and control methods, progress within the field of medical magnetic endoscopes has mainly been in the domain of enhanced navigation. Interventional tasks such as biopsy, polyp removal, and clip placement are a major procedural component of endoscopy. Little advancement has been done in this area due to the problem of adequately controlling and stabilizing magnetically actuated endoscopes for interventional tasks. In the present paper we discuss a novel model-based Linear Parameter Varying (LPV) control approach to provide stability during interventional maneuvers. This method linearizes the non-linear dynamic interaction between the external actuation system and the endoscope in a set of equilibria, associated to different distances between the magnetic source and the endoscope, and computes different controllers for each equilibrium. This approach provides the global stability of the overall system and robustness against external disturbances. The performance of the LPV approach is compared to an intelligent teleoperation control method (based on a Proportional Integral Derivative (PID) controller), on the Magnetic Flexible Endoscope (MFE) platform. Four biopsies in different regions of the colon and at two different system equilibria are performed. Both controllers are asked to stabilize the endoscope in the presence of external disturbances (i.e. the introduction of the biopsy forceps through the working channel of the endoscope). The experiments, performed in a benchtop colon simulator, show a maximum reduction of the mean orientation error of the endoscope of 45.8% with the LPV control compared to the PID controller.
RESUMEN
Magnetically actuated endoscopes are currently transitioning in to clinical use for procedures such as colonoscopy, presenting numerous benefits over their conventional counterparts. Intelligent and easy-to-use control strategies are an essential part of their clinical effectiveness due to the un-intuitive nature of magnetic field interaction. However, work on developing intelligent control for these devices has mainly been focused on general purpose endoscope navigation. In this work, we investigate the use of autonomous robotic control for magnetic colonoscope intervention via biopsy, another major component of clinical viability. We have developed control strategies with varying levels of robotic autonomy, including semi-autonomous routines for identifying and performing targeted biopsy, as well as random quadrant biopsy. We present and compare the performance of these approaches to magnetic endoscope biopsy against the use of a standard flexible endoscope on bench-top using a colonoscopy training simulator and silicone colon model. The semi-autonomous routines for targeted and random quadrant biopsy were shown to reduce user workload with comparable times to using a standard flexible endoscope.
RESUMEN
In the present work we discuss a novel dynamic control approach for magnetically actuated robots, by proposing an adaptive control technique, robust towards parametric uncertainties and unknown bounded disturbances. The former generally arise due to partial knowledge of the robots' dynamic parameters, such as inertial factors, the latter are the outcome of unpredictable interaction with unstructured environments. In order to show the application of the proposed approach, we consider controlling the Magnetic Flexible Endoscope (MFE) which is composed of a soft-tethered Internal Permanent Magnet (IPM), actuated with a single External Permanent Magnet (EPM). We provide with experimental analysis to show the possibility of levitating the MFE - one of the most difficult tasks with this platform - in case of partial knowledge of the IPM's dynamics and no knowledge of the tether's behaviour. Experiments in an acrylic tube show a reduction of contact of the 32% compared to non-levitating techniques and 1.75 times faster task completion with respect to previously proposed levitating techniques. More realistic experiments, performed in a colon phantom, show that levitating the capsule achieves faster and smoother exploration and that the minimum time for completing the task is attained by the proposed approach.
RESUMEN
The present letter investigates a novel control approach for magnetically driven soft-tethered capsules for colonoscopy-a potentially painless approach for colon inspection. The focus of this work is on a class of devices composed of a magnetic capsule endoscope actuated by a single external permanent magnet. Actuation is achieved by manipulating the external magnet with a serial manipulator, which in turn produces forces and torques on the internal magnetic capsule. We propose a control strategy which, counteracting gravity, achieves levitation of the capsule. This technique, based on a nonlinear backstepping approach, is able to limit contact with the colon walls, reducing friction, avoiding contact with internal folds, and facilitating the inspection of nonplanar cavities. The approach is validated on an experimental setup, which embodies a general scenario faced in colonoscopy. The experiments show that we can attain 19.5% of contact with the colon wall, compared to the almost 100% of previously proposed approaches. Moreover, we show that the control can be used to navigate the capsule through a more realistic environment-a colon phantom-with reasonable completion time.