Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Expo Sci Environ Epidemiol ; 22(5): 522-32, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22781436

RESUMEN

Two deterministic models (US EPA's Office of Pesticide Programs Residential Standard Operating Procedures (OPP Residential SOPs) and Draft Protocol for Measuring Children's Non-Occupational Exposure to Pesticides by all Relevant Pathways (Draft Protocol)) and four probabilistic models (CARES(®), Calendex™, ConsExpo, and SHEDS) were used to estimate aggregate residential exposures to pesticides. The route-specific exposure estimates for young children (2-5 years) generated by each model were compared to evaluate data inputs, algorithms, and underlying assumptions. Three indoor exposure scenarios were considered: crack and crevice, fogger, and flying insect killer. Dermal exposure estimates from the OPP Residential SOPs and the Draft Protocol were 4.75 and 2.37 mg/kg/day (crack and crevice scenario) and 0.73 and 0.36 mg/kg/day (fogger), respectively. The dermal exposure estimates (99th percentile) for the crack and crevice scenario were 16.52, 12.82, 3.57, and 3.30 mg/kg/day for CARES, Calendex, SHEDS, and ConsExpo, respectively. Dermal exposure estimates for the fogger scenario from CARES and Calendex (1.50 and 1.47 mg/kg/day, respectively) were slightly higher than those from SHEDS and ConsExpo (0.74 and 0.55 mg/kg/day, respectively). The ConsExpo derived non-dietary ingestion estimates (99th percentile) under these two scenarios were higher than those from SHEDS, CARES, and Calendex. All models produced extremely low exposure estimates for the flying insect killer scenario. Using similar data inputs, the model estimates by route for these scenarios were consistent and comparable. Most of the models predicted exposures within a factor of 5 at the 50th and 99th percentiles. The differences identified are explained by activity assumptions, input distributions, and exposure algorithms.


Asunto(s)
Exposición a Riesgos Ambientales/estadística & datos numéricos , Modelos Estadísticos , Plaguicidas/efectos adversos , Algoritmos , Preescolar , Humanos , Características de la Residencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA