Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 605(7910): 503-508, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35545669

RESUMEN

Mutations in the germline generates all evolutionary genetic variation and is a cause of genetic disease. Parental age is the primary determinant of the number of new germline mutations in an individual's genome1,2. Here we analysed the genome-wide sequences of 21,879 families with rare genetic diseases and identified 12 individuals with a hypermutated genome with between two and seven times more de novo single-nucleotide variants than expected. In most families (9 out of 12), the excess mutations came from the father. Two families had genetic drivers of germline hypermutation, with fathers carrying damaging genetic variation in DNA-repair genes. For five of the families, paternal exposure to chemotherapeutic agents before conception was probably a key driver of hypermutation. Our results suggest that the germline is well protected from mutagenic effects, hypermutation is rare, the number of excess mutations is relatively modest and most individuals with a hypermutated genome will not have a genetic disease.


Asunto(s)
Enfermedades Genéticas Congénitas , Células Germinativas , Mutación de Línea Germinal , Factores de Edad , Enfermedades Genéticas Congénitas/genética , Mutación de Línea Germinal/genética , Humanos , Masculino , Mutagénesis/genética , Mutación , Padres , Polimorfismo de Nucleótido Simple
2.
Am J Med Genet A ; 191(2): 546-553, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36317804

RESUMEN

Distal arthrogryposes (DA) are a group of conditions presenting with multiple congenital contractures in the distal joints. The 10 types of DA are distinguished by different extra-articular manifestations. Heterozygous gain-of-function variants in PIEZO2 are known to cause a spectrum of DA conditions including DA type 3, DA type 5, and possibly Marden Walker syndrome, which are usually distinguished by the presence of cleft palate (DA3), ptosis and restriction in eye movements (DA5), and specific facial abnormalities and central nervous system involvement, respectively. We report on a boy with a recurrent de novo heterozygous PIEZO2 variant in exon 20 (NM_022068.3: c.2994G > A, p.(Met998Ile); NM_001378183.1: c.3069G > A, p.(Met1023Ile)), who presented at birth with DA and later developed respiratory insufficiency. His phenotype broadly fits the PIEZO2 phenotypic spectrum and potentially extends it with novel phenotypic features of pretibial linear vertical crease, immobile skin, immobile tongue, and lipid myopathy.


Asunto(s)
Artrogriposis , Humanos , Artrogriposis/diagnóstico , Artrogriposis/genética , Linaje , Fenotipo , Canales Iónicos/genética
3.
Mov Disord ; 37(7): 1547-1554, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35722775

RESUMEN

BACKGROUND: Most reported patients carrying GNAO1 mutations showed a severe phenotype characterized by early-onset epileptic encephalopathy and/or chorea. OBJECTIVE: The aim was to characterize the clinical and genetic features of patients with mild GNAO1-related phenotype with prominent movement disorders. METHODS: We included patients diagnosed with GNAO1-related movement disorders of delayed onset (>2 years). Patients experiencing either severe or profound intellectual disability or early-onset epileptic encephalopathy were excluded. RESULTS: Twenty-four patients and 1 asymptomatic subject were included. All patients showed dystonia as prominent movement disorder. Dystonia was focal in 1, segmental in 6, multifocal in 4, and generalized in 13. Six patients showed adolescence or adulthood-onset dystonia. Seven patients presented with parkinsonism and 3 with myoclonus. Dysarthria was observed in 19 patients. Mild and moderate ID were present in 10 and 2 patients, respectively. CONCLUSION: We highlighted a mild GNAO1-related phenotype, including adolescent-onset dystonia, broadening the clinical spectrum of this condition. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Distonía , Trastornos Distónicos , Subunidades alfa de la Proteína de Unión al GTP Gi-Go , Trastornos del Movimiento , Trastornos Parkinsonianos , Distonía/genética , Trastornos Distónicos/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Humanos , Trastornos del Movimiento/genética , Trastornos Parkinsonianos/genética , Fenotipo
4.
Pediatr Nephrol ; 37(1): 21-35, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33675412

RESUMEN

Rapid technological advances in genomic testing continue to increase our understanding of the genetic basis of a wide range of kidney disorders. Establishing a molecular diagnosis benefits the individual by bringing an end to what is often a protracted diagnostic odyssey, facilitates accurate reproductive counselling for families and, in the future, is likely to lead to the delivery of more targeted management and surveillance regimens. The selection of the most appropriate testing modality requires an understanding both of the technologies available and of the genetic architecture and heterogeneity of kidney disease. Whilst we are witnessing a far greater diagnostic yield with broader genetic testing, such approaches invariably generate variants of uncertain significance and secondary incidental findings, which are not only difficult to interpret but present ethical challenges with reporting and feeding back to patients and their families. Here, we review the spectrum of nephrogenetic disorders, consider the optimal approach to genetic testing, explore the clinical utility of obtaining a molecular diagnosis, reflect on the challenges of variant interpretation and look to the future of this dynamic field.


Asunto(s)
Genómica , Enfermedades Renales , Pruebas Genéticas , Humanos , Enfermedades Renales/diagnóstico , Enfermedades Renales/genética
5.
Am J Med Genet A ; 185(4): 1228-1235, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33439541

RESUMEN

Spondylometaphyseal dysplasia with cerebral hypomyelination (SMD-H) is a very rare but distinctive phenotype, unusually combining spondylometaphyseal dysplasia with hypomyelinating leukodystrophy. Recently, SMD-H has been associated with variants confined to a specific intra-genic locus involving Exon 7, suggesting that AIFM1 plays an important role in bone development and metabolism as well as cerebral myelination. Here we describe two further affected boys, one with a novel intronic variant associated with skipping of Exon 7 of AIFM1 and the other a synonymous variant within Exon 7 of AIFM1. We describe their clinical course and radiological and genetic findings, providing further insight into the natural history of this condition.


Asunto(s)
Factor Inductor de la Apoptosis/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Predisposición Genética a la Enfermedad , Malformaciones del Sistema Nervioso/genética , Osteocondrodisplasias/genética , Desarrollo Óseo/genética , Exones , Enfermedades Genéticas Ligadas al Cromosoma X/diagnóstico , Enfermedades Genéticas Ligadas al Cromosoma X/diagnóstico por imagen , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Humanos , Masculino , Mutación/genética , Malformaciones del Sistema Nervioso/diagnóstico , Malformaciones del Sistema Nervioso/diagnóstico por imagen , Malformaciones del Sistema Nervioso/patología , Osteocondrodisplasias/diagnóstico , Osteocondrodisplasias/diagnóstico por imagen , Osteocondrodisplasias/patología , Linaje
6.
Hum Mutat ; 41(5): 1042-1050, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32097528

RESUMEN

Pathogenic variants in ZMYND11, which acts as a transcriptional repressor, have been associated with intellectual disability, behavioral abnormalities, and seizures. Only 11 affected individuals have been reported to date, and the phenotype associated with pathogenic variants in this gene have not been fully defined. Here, we present 16 additional patients with predicted pathogenic heterozygous variants in including four individuals from the same family, to further delineate and expand the genotypic and phenotypic spectrum of ZMYND11-related syndromic intellectual disability. The associated phenotype includes developmental delay, particularly affecting speech, mild-moderate intellectual disability, significant behavioral abnormalities, seizures, and hypotonia. There are subtle shared dysmorphic features, including prominent eyelashes and eyebrows, a depressed nasal bridge with bulbous nasal tip, anteverted nares, thin vermilion of the upper lip, and wide mouth. Novel features include brachydactyly and tooth enamel hypoplasia. Most identified variants are likely to result in premature truncation and/or nonsense-mediated decay. Two ZMYND11 variants located in the final exon-p.(Gln586*) (likely escaping nonsense-mediated decay) and p.(Cys574Arg)-are predicted to disrupt the MYND-type zinc-finger motif and likely interfere with binding to its interaction partners. Hence, the homogeneous phenotype likely results from a common mechanism of loss-of-function.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas Co-Represoras/genética , Proteínas de Unión al ADN/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Alelos , Niño , Preescolar , Facies , Femenino , Estudios de Asociación Genética/métodos , Genotipo , Haploinsuficiencia , Humanos , Masculino , Mutación , Degradación de ARNm Mediada por Codón sin Sentido , Fenotipo , Síndrome , Dedos de Zinc
7.
Genet Med ; 22(1): 124-131, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31316167

RESUMEN

PURPOSE: Congenital contractural arachnodactyly (CCA) is an autosomal dominant connective tissue disorder manifesting joint contractures, arachnodactyly, crumpled ears, and kyphoscoliosis as main features. Due to its rarity, rather aspecific clinical presentation, and overlap with other conditions including Marfan syndrome, the diagnosis is challenging, but important for prognosis and clinical management. CCA is caused by pathogenic variants in FBN2, encoding fibrillin-2, but locus heterogeneity has been suggested. We designed a clinical scoring system and diagnostic criteria to support the diagnostic process and guide molecular genetic testing. METHODS: In this retrospective study, we assessed 167 probands referred for FBN2 analysis and classified them into a FBN2-positive (n = 44) and FBN2-negative group (n = 123) following molecular analysis. We developed a 20-point weighted clinical scoring system based on the prevalence of ten main clinical characteristics of CCA in both groups. RESULTS: The total score was significantly different between the groups (P < 0.001) and was indicative for classifying patients into unlikely CCA (total score <7) and likely CCA (total score ≥7) groups. CONCLUSIONS: Our clinical score is helpful for clinical guidance for patients suspected to have CCA, and provides a quantitative tool for phenotyping in research settings.


Asunto(s)
Aracnodactilia/diagnóstico , Contractura/diagnóstico , Fibrilina-2/genética , Análisis de Secuencia de ADN/métodos , Aracnodactilia/genética , Niño , Contractura/genética , Diagnóstico Diferencial , Diagnóstico Precoz , Femenino , Pruebas Genéticas , Humanos , Masculino , Síndrome de Marfan/diagnóstico , Síndrome de Marfan/genética , Fenotipo , Estudios Retrospectivos , Sensibilidad y Especificidad
8.
Am J Med Genet C Semin Med Genet ; 181(4): 627-637, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31710781

RESUMEN

EML1 encodes the protein Echinoderm microtubule-associated protein-like 1 or EMAP-1 that binds to the microtubule complex. Mutations in this gene resulting in complex brain malformations have only recently been published with limited clinical descriptions. We provide further clinical and imaging details on three previously published families, and describe two novel unrelated individuals with a homozygous partial EML1 deletion and a homozygous missense variant c.760G>A, p.(Val254Met), respectively. From review of the clinical and imaging data of eight individuals from five families with biallelic EML1 variants, a very consistent imaging phenotype emerges. The clinical syndrome is characterized by mainly neurological features including severe developmental delay, drug-resistant seizures and visual impairment. On brain imaging there is megalencephaly with a characteristic ribbon-like subcortical heterotopia combined with partial or complete callosal agenesis and an overlying polymicrogyria-like cortical malformation. Several of its features can be recognized on prenatal imaging especially the abnormaly formed lateral ventricles, hydrocephalus (in half of the cases) and suspicion of a neuronal migration disorder. In conclusion, biallelic EML1 disease-causing variants cause a highly specific pattern of congenital brain malformations, severe developmental delay, seizures and visual impairment.


Asunto(s)
Encéfalo/patología , Proteínas Asociadas a Microtúbulos/genética , Humanos , Malformaciones del Desarrollo Cortical del Grupo II/genética , Mutación Missense , Eliminación de Secuencia
9.
Am J Hum Genet ; 98(2): 373-81, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26833328

RESUMEN

Mutations in more than a hundred genes have been reported to cause X-linked recessive intellectual disability (ID) mainly in males. In contrast, the number of identified X-linked genes in which de novo mutations specifically cause ID in females is limited. Here, we report 17 females with de novo loss-of-function mutations in USP9X, encoding a highly conserved deubiquitinating enzyme. The females in our study have a specific phenotype that includes ID/developmental delay (DD), characteristic facial features, short stature, and distinct congenital malformations comprising choanal atresia, anal abnormalities, post-axial polydactyly, heart defects, hypomastia, cleft palate/bifid uvula, progressive scoliosis, and structural brain abnormalities. Four females from our cohort were identified by targeted genetic testing because their phenotype was suggestive for USP9X mutations. In several females, pigment changes along Blaschko lines and body asymmetry were observed, which is probably related to differential (escape from) X-inactivation between tissues. Expression studies on both mRNA and protein level in affected-female-derived fibroblasts showed significant reduction of USP9X level, confirming the loss-of-function effect of the identified mutations. Given that some features of affected females are also reported in known ciliopathy syndromes, we examined the role of USP9X in the primary cilium and found that endogenous USP9X localizes along the length of the ciliary axoneme, indicating that its loss of function could indeed disrupt cilium-regulated processes. Absence of dysregulated ciliary parameters in affected female-derived fibroblasts, however, points toward spatiotemporal specificity of ciliary USP9X (dys-)function.


Asunto(s)
Discapacidades del Desarrollo/genética , Discapacidad Intelectual/genética , Mutación , Ubiquitina Tiolesterasa/genética , Adolescente , Secuencia de Bases , Niño , Preescolar , Atresia de las Coanas/diagnóstico , Atresia de las Coanas/genética , Discapacidades del Desarrollo/diagnóstico , Femenino , Genes Ligados a X , Pruebas Genéticas , Humanos , Discapacidad Intelectual/diagnóstico , Datos de Secuencia Molecular , Fenotipo , Ubiquitina Tiolesterasa/metabolismo , Inactivación del Cromosoma X , Adulto Joven
10.
BMC Med Genet ; 18(1): 79, 2017 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-28747166

RESUMEN

BACKGROUND: Fumarate hydratase (FH) deficiency is a rare autosomal recessive disorder which results in a major defect in cellular metabolism. It presents in infancy with progressive encephalopathy, hypotonia, seizures and failure to thrive and is often fatal in childhood. It is caused by mutations in the FH gene (1q42.1) that result in deficiency of the citric acid cycle enzyme fumarate hydratase, resulting in accumulation of fumaric acid. Heterozygous germline mutations in the FH gene predispose to an aggressive autosomal dominant inherited early-onset kidney cancer syndrome: hereditary leiomyomatosis and renal cell cancer (HLRCC). CASE PRESENTATION: Cascade FH mutation screening enabled the early diagnosis of a renal tumour in an asymptomatic parent of a child with fumarate hydratase deficiency, resulting in timely and possibly life-saving treatment. CONCLUSION: While the theoretical risk of kidney cancer in parents of children with recessive fumarate hydratase deficiency is well recognized, to our knowledge this is the first report of a kidney tumour being detected in a parent by screening performed for this indication. This underscores the importance of offering lifelong kidney surveillance to such parents and other heterozygous relatives of children born with fumarate hydratase deficiency.


Asunto(s)
Carcinoma de Células Renales/genética , Fumarato Hidratasa/deficiencia , Fumarato Hidratasa/genética , Neoplasias Renales/genética , Errores Innatos del Metabolismo/genética , Hipotonía Muscular/genética , Trastornos Psicomotores/genética , Carcinoma de Células Renales/diagnóstico , Carcinoma de Células Renales/patología , Detección Precoz del Cáncer , Femenino , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Humanos , Lactante , Neoplasias Renales/complicaciones , Neoplasias Renales/diagnóstico , Neoplasias Renales/patología , Errores Innatos del Metabolismo/complicaciones , Errores Innatos del Metabolismo/diagnóstico , Errores Innatos del Metabolismo/patología , Hipotonía Muscular/complicaciones , Hipotonía Muscular/diagnóstico , Hipotonía Muscular/patología , Trastornos Psicomotores/complicaciones , Trastornos Psicomotores/diagnóstico , Trastornos Psicomotores/patología
11.
Am J Med Genet A ; 170A(5): 1115-26, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26971886

RESUMEN

Cerebro-Costo-Mandibular syndrome (CCMS) is a rare autosomal dominant condition comprising branchial arch-derivative malformations with striking rib-gaps. Affected patients often have respiratory difficulties, associated with upper airway obstruction, reduced thoracic capacity, and scoliosis. We describe a series of 12 sporadic and 4 familial patients including 13 infants/children and 3 adults. Severe micrognathia and reduced numbers of ribs with gaps are consistent findings. Cleft palate, feeding difficulties, respiratory distress, tracheostomy requirement, and scoliosis are common. Additional malformations such as horseshoe kidney, hypospadias, and septal heart defect may occur. Microcephaly and significant developmental delay are present in a small minority of patients. Key radiological findings are of a narrow thorax, multiple posterior rib gaps and abnormal costo-transverse articulation. A novel finding in 2 patients is bilateral accessory ossicles arising from the hyoid bone. Recently, specific mutations in SNRPB, which encodes components of the major spliceosome, have been found to cause CCMS. These mutations cluster in an alternatively spliced regulatory exon and result in altered SNRPB expression. DNA was available from 14 patients and SNRPB mutations were identified in 12 (4 previously reported). Eleven had recurrent mutations previously described in patients with CCMS and one had a novel mutation in the alternative exon. These results confirm the specificity of SNRPB mutations in CCMS and provide further evidence for the role of spliceosomal proteins in craniofacial and thoracic development.


Asunto(s)
Anomalías Múltiples/genética , Fisura del Paladar/genética , Discapacidad Intelectual/genética , Micrognatismo/genética , Costillas/anomalías , Proteínas Nucleares snRNP/genética , Anomalías Múltiples/fisiopatología , Adolescente , Niño , Preescolar , Fisura del Paladar/complicaciones , Fisura del Paladar/fisiopatología , Exones , Femenino , Humanos , Lactante , Discapacidad Intelectual/complicaciones , Discapacidad Intelectual/fisiopatología , Masculino , Micrognatismo/complicaciones , Micrognatismo/fisiopatología , Mutación , Costillas/crecimiento & desarrollo , Costillas/fisiopatología , Escoliosis/complicaciones , Escoliosis/genética , Escoliosis/fisiopatología , Empalmosomas/genética
12.
J Med Genet ; 51(10): 659-68, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25125236

RESUMEN

BACKGROUND: Cornelia de Lange syndrome (CdLS) is a multisystem disorder with distinctive facial appearance, intellectual disability and growth failure as prominent features. Most individuals with typical CdLS have de novo heterozygous loss-of-function mutations in NIPBL with mosaic individuals representing a significant proportion. Mutations in other cohesin components, SMC1A, SMC3, HDAC8 and RAD21 cause less typical CdLS. METHODS: We screened 163 affected individuals for coding region mutations in the known genes, 90 for genomic rearrangements, 19 for deep intronic variants in NIPBL and 5 had whole-exome sequencing. RESULTS: Pathogenic mutations [including mosaic changes] were identified in: NIPBL 46 [3] (28.2%); SMC1A 5 [1] (3.1%); SMC3 5 [1] (3.1%); HDAC8 6 [0] (3.6%) and RAD21 1 [0] (0.6%). One individual had a de novo 1.3 Mb deletion of 1p36.3. Another had a 520 kb duplication of 12q13.13 encompassing ESPL1, encoding separase, an enzyme that cleaves the cohesin ring. Three de novo mutations were identified in ANKRD11 demonstrating a phenotypic overlap with KBG syndrome. To estimate the number of undetected mosaic cases we used recursive partitioning to identify discriminating features in the NIPBL-positive subgroup. Filtering of the mutation-negative group on these features classified at least 18% as 'NIPBL-like'. A computer composition of the average face of this NIPBL-like subgroup was also more typical in appearance than that of all others in the mutation-negative group supporting the existence of undetected mosaic cases. CONCLUSIONS: Future diagnostic testing in 'mutation-negative' CdLS thus merits deeper sequencing of multiple DNA samples derived from different tissues.


Asunto(s)
Síndrome de Cornelia de Lange/genética , Heterogeneidad Genética , Mosaicismo , Cara/patología , Estudios de Asociación Genética , Humanos , Mutación , Fenotipo
13.
J Endocr Soc ; 7(1): bvac165, 2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36419940

RESUMEN

Context: Differences of sex development (DSD) represent a wide range of conditions presenting at different ages to various health professionals. Establishing a diagnosis, supporting the family, and developing a management plan are important. Objective: We aimed to better understand the presentation and prevalence of pediatric DSD. Methods: A retrospective, observational cohort study was undertaken in a single tertiary pediatric center of all children and young people (CYP) referred to a DSD multidisciplinary team over 25 years (1995-2019). In total, 607 CYP (520 regional referrals) were included. Data were analyzed for diagnosis, sex-assignment, age and mode of presentation, additional phenotypic features, mortality, and approximate point prevalence. Results: Among the 3 major DSD categories, sex chromosome DSD was diagnosed in 11.2% (68/607) (most commonly 45,X/46,XY mosaicism), 46,XY DSD in 61.1% (371/607) (multiple diagnoses often with associated features), while 46,XX DSD occurred in 27.7% (168/607) (often 21-hydroxylase deficiency). Most children (80.1%) presented as neonates, usually with atypical genitalia, adrenal insufficiency, undescended testes or hernias. Those presenting later had diverse features. Rarely, the diagnosis was made antenatally (3.8%, n = 23) or following incidental karyotyping/family history (n = 14). Mortality was surprisingly high in 46,XY children, usually due to complex associated features (46,XY girls, 8.3%; 46,XY boys, 2.7%). The approximate point prevalence of neonatal referrals for investigation of DSD was 1 in 6347 births, and 1 in 5101 overall throughout childhood. Conclusion: DSD represent a diverse range of conditions that can present at different ages. Pathways for expert diagnosis and management are important to optimize care.

14.
Pediatr Nephrol ; 26(8): 1331-4, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21597970

RESUMEN

Sotos syndrome is characterized by overgrowth, a typical facial appearance, and learning difficulties. It is caused by heterozygous mutations, including deletions, of NSD1 located at chromosome 5q35. Here we report two unrelated cases of Sotos syndrome associated with nephrocalcinosis. One patient also had idiopathic infantile hypercalcemia. Genetic investigations revealed heterozygous deletions at 5q35 in both patients, encompassing NSD1 and SLC34A1 (NaPi2a). Mutations in SLC34A1 have previously been associated with hypercalciuria/nephrolithiasis. Our cases suggest a contiguous gene deletion syndrome including NSD1 and SLC34A1 and provide a potential genetic basis for idiopathic infantile hypercalcemia.


Asunto(s)
Hipercalcemia/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Nefrocalcinosis/genética , Proteínas Nucleares/genética , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/genética , Síndrome de Sotos/complicaciones , Síndrome de Sotos/genética , Cromosomas Humanos Par 5/genética , Hibridación Genómica Comparativa , Femenino , Eliminación de Gen , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina , Humanos , Hipercalcemia/fisiopatología , Lactante , Recién Nacido , Mutación , Nefrocalcinosis/fisiopatología , Síndrome de Sotos/fisiopatología
15.
HGG Adv ; 2(1): 100015, 2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33537682

RESUMEN

Histone deacetylases play crucial roles in the regulation of chromatin structure and gene expression in the eukaryotic cell, and disruption of their activity causes a wide range of developmental disorders in humans. Loss-of-function alleles of HDAC4, a founding member of the class IIa deacetylases, have been reported in brachydactyly-mental retardation syndrome (BDMR). However, while disruption of HDAC4 activity and deregulation of its downstream targets may contribute to the BDMR phenotype, loss of HDAC4 function usually occurs as part of larger deletions of chromosome 2q37; BDMR is also known as chromosome 2q37 deletion syndrome, and the precise role of HDAC4 within the phenotype remains uncertain. Thus, identification of missense variants should shed new light on the role of HDAC4 in normal development. Here, we report seven unrelated individuals with a phenotype distinct from that of BDMR, all of whom have heterozygous de novo missense variants that affect a major regulatory site of HDAC4, required for signal-dependent 14-3-3 binding and nucleocytoplasmic shuttling. Two individuals possess variants altering Thr244 or Glu247, whereas the remaining five all carry variants altering Pro248, a key residue for 14-3-3 binding. We propose that the variants in all seven individuals impair 14-3-3 binding (as confirmed for the first two variants by immunoprecipitation assays), thereby identifying deregulation of HDAC4 as a pathological mechanism in a previously uncharacterized developmental disorder.

16.
Hum Mutat ; 30(2): E330-7, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18853461

RESUMEN

Arthrogryposis, Renal dysfunction and Cholestasis (ARC) syndrome is a multi-system autosomal recessive disorder caused by germline mutations in VPS33B. The detection of germline VPS33B mutations removes the need for diagnostic organ biopsies (these carry a>50% risk of life-threatening haemorrhage due to platelet dysfunction); however, VPS33B mutations are not detectable in approximately 25% of patients. In order further to define the molecular basis of ARC we performed mutation analysis and mRNA and protein studies in patients with a clinical diagnosis of ARC. Here we report novel mutations in VPS33B in patients from Eastern Europe and South East Asia. One of the mutations was present in 7 unrelated Korean patients. Reduced expression of VPS33B and cellular phenotype was detected in fibroblasts from patients clinically diagnosed with ARC with and without known VPS33B mutations. One mutation-negative patient was found to have normal mRNA and protein levels. This patient's clinical condition improved and he is alive at the age of 2.5 years. Thus we show that all patients with a classical clinical course of ARC had decreased expression of VPS33B whereas normal VPS33B expression was associated with good prognosis despite initial diagnosis of ARC.


Asunto(s)
Artrogriposis/complicaciones , Artrogriposis/diagnóstico , Colestasis/complicaciones , Colestasis/diagnóstico , Enfermedades Renales/complicaciones , Enfermedades Renales/diagnóstico , Artrogriposis/etnología , Preescolar , Colestasis/etnología , Fibroblastos/metabolismo , Fibroblastos/ultraestructura , Humanos , Lactante , Enfermedades Renales/etnología , Masculino , Mutación/genética , Síndrome , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
18.
Case Rep Pediatr ; 2017: 9682803, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28523199

RESUMEN

Phosphatase and tensin homolog (PTEN) is the protein encoded by the PTEN gene (10q23.3). PTEN mutations are related to a variety of rare diseases referred to collectively as PTEN hamartoma tumor syndromes (PHTS), which include Cowden Syndrome, Bannayan-Riley-Ruvalcaba syndrome, Proteus Syndrome, and Proteus-like syndrome. These diseases are associated with an increased risk of malignancy and for this reason an accurate and early diagnosis is essential in order to institute cancer surveillance. PTEN is a regulator of growth and homeostasis in immune system cells, although there are limited data describing immune dysregulation caused by PTEN mutations. We describe a case of PHTS syndrome caused by a de novo mutation in PTEN detected using a targeted next generation sequencing (NGS) gene panel which was instigated for workup of cutaneous vasculitis. We highlight the diagnostic utility of this approach and that mutations in PTEN may be associated with immune-dysregulatory features such as vasculitis in young children.

19.
Horm Res Paediatr ; 88(2): 172-178, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28359061

RESUMEN

BACKGROUND: Coexistence of congenital adrenal hyperplasia (CAH) and congenital hypothyroidism (CH) due to TG mutation in the same non-consanguineous family is rare. CASE SERIES: We report 4 siblings born to unrelated parents, the father being an asymptomatic carrier of homozygous p.V281L and heterozygous p.I172N CYP21A2 mutations. Sibling 1 had salt-wasting CAH (CYP21A2 genotype Intron 2 splice/p.I172N and p.V281L). She also had CH (TG genotype p.R296/ p.T1416Rfs*30) and learning difficulties. Poor compliance and morbid obesity resulted in short stature, precocious puberty, hirsutism, amenorrhoea, insulin insensitivity and a possible adrenal adenoma. Sibling 3 (CYP21A2 and TG genotype similar to sibling 1) is a boy presenting with salt-wasting CAH, CH, and developmental delay. He was overweight and underwent precocious puberty. Although siblings 2 and 4 (both females) share the same CYP21A2 genotype (Intron 2 splice/p.V281L), the former only had biochemical evidence of CAH, while the latter presented at 9.8 years of age with a history of pubarche at 7 years and advanced bone age. CONCLUSIONS: We report the unusual occurrence of 2 rare autosomal recessive diseases, CAH and CH. Our cases highlight the phenotypic variability of CAH and CH due to TG mutations, even within a single family, and illustrate the importance of optimal disease control.
.


Asunto(s)
Hiperplasia Suprarrenal Congénita/genética , Hipotiroidismo Congénito/genética , Tiroglobulina/genética , Adolescente , Hiperplasia Suprarrenal Congénita/complicaciones , Hiperplasia Suprarrenal Congénita/tratamiento farmacológico , Niño , Hipotiroidismo Congénito/complicaciones , Hipotiroidismo Congénito/tratamiento farmacológico , Femenino , Humanos , Masculino , Mutación , Cooperación del Paciente , Linaje , Fenotipo
20.
Nat Genet ; 49(2): 223-237, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27992417

RESUMEN

Histone lysine methylation, mediated by mixed-lineage leukemia (MLL) proteins, is now known to be critical in the regulation of gene expression, genomic stability, cell cycle and nuclear architecture. Despite MLL proteins being postulated as essential for normal development, little is known about the specific functions of the different MLL lysine methyltransferases. Here we report heterozygous variants in the gene KMT2B (also known as MLL4) in 27 unrelated individuals with a complex progressive childhood-onset dystonia, often associated with a typical facial appearance and characteristic brain magnetic resonance imaging findings. Over time, the majority of affected individuals developed prominent cervical, cranial and laryngeal dystonia. Marked clinical benefit, including the restoration of independent ambulation in some cases, was observed following deep brain stimulation (DBS). These findings highlight a clinically recognizable and potentially treatable form of genetic dystonia, demonstrating the crucial role of KMT2B in the physiological control of voluntary movement.


Asunto(s)
Distonía/genética , N-Metiltransferasa de Histona-Lisina/genética , Mutación/genética , Adolescente , Proteínas de Unión al ADN/genética , Femenino , Histona Metiltransferasas , Histonas/genética , Humanos , Lisina/genética , Masculino , Metilación , Proteínas Nucleares/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA