Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 448
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Comput Chem ; 45(17): 1483-1492, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38470153

RESUMEN

Thanks to recent developments in hardware and software, quantum chemical methods are increasingly used for interpreting the complex mechanisms underlying polymerization reaction by homogeneous catalysis. Unfortunately, the dimensions of even the smallest realistic models are too large to permit the use of state-of-the-art composite wave function methods. Under these circumstances, density functional theory still offers the best compromise between cost and accuracy. However, comprehensive benchmarks of different functionals are not yet available for this important research field. The main aim of the present paper is to fill this gap by performing an unbiased comparison of several density functionals and continuum solvent models for the stereo-control in the propylene polymerization on prototypical catalysts inducing different reaction mechanisms. While it was not possible to define a unique computational protocol providing the best results in all the situations, the B3PW91 functional in conjunction with D3 empirical dispersions and the solvent model density solvent model performs remarkably well for three out of the four investigated catalysts. Under such circumstances, it is recommended to compare the results delivered by different models when approaching additional classes of catalysts.

2.
J Comput Chem ; 45(18): 1587-1602, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38517313

RESUMEN

A comprehensive study of the different classes of cycloaddition reactions ([3+2], [2+2], and [2+1]) of SO2 to acetylene and ethylene has been performed using density functional theory (DFT) and composite wavefunction methods. The [3+2] cycloaddition reaction, that was previously explored in the context of the cycloaddition of thioformaldehyde S-methylide (TSM) to ethylene and acetylene, proceeds in a concerted way to the formation of stable heterocycles. In this paper, we extend our study to the [2+2] and [2+1] cycloadditions of SO2 to acetylene, which would produce 1,1-oxathiete-2-oxide and thiirene-1,1-dioxide, respectively. One of the main conclusions is that cyclic 1,1-oxathiete-2-oxide can open through a relatively easy breaking of the SO single bond and rearrange toward sulfinyl acetaldehyde (SA). The SA molecule can easily undergo several internal rearrangements, which eventually lead to sulfenic acid and sulfoxide derivatives of ethenone, 1,2,3-dioxathiole, and CO plus sulfinylmethane. The most probable path, however, produces 2-thioxoacetic acid, whose derivatives (or those of the corresponding acetate) are usually obtained by Willgerodt-Kindler-type sulfuration of acetates. This product can in turn decompose, leading to the final products CO2 and H2CS. Comparison of this decomposition path with that of 2-amino-2-thioxoacetic acid shows that the process occurs through different H-transfer processes.

3.
Exp Eye Res ; 245: 109982, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38942134

RESUMEN

Mast cells (MCs), traditionally viewed as key players in IgE-mediated allergic responses, are increasingly recognized for their versatile roles. Situated at critical barrier sites such as the ocular surface, these sentinel cells participate in a broad array of physiological and pathological processes. This review presents a comprehensive update on the immune pathophysiology of MCs, with a particular focus on the mechanisms underlying innate immunity. It highlights their roles at the ocular surface, emphasizing their participation in allergic reactions, maintenance of corneal homeostasis, neovascularization, wound healing, and immune responses in corneal grafts. The review also explores the potential of MCs as therapeutic targets, given their significant contributions to disease pathogenesis and their capacity to modulate immunity. Through a thorough examination of current literature, we aim to elucidate the immune pathophysiology and multifaceted roles of MCs in ocular surface health and disease, suggesting directions for future research and therapeutic innovation.


Asunto(s)
Mastocitos , Humanos , Mastocitos/fisiología , Córnea/inmunología , Inmunidad Innata/fisiología , Enfermedades de la Córnea/patología , Animales , Cicatrización de Heridas/fisiología , Conjuntiva/inmunología , Conjuntiva/patología
4.
Annu Rev Phys Chem ; 74: 29-52, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-36413540

RESUMEN

Gas-phase molecular spectroscopy is a natural playground for accurate quantum-chemical computations. However, the molecular bricks of life (e.g., DNA bases or amino acids) are challenging systems because of the unfavorable scaling of quantum-chemical models with the molecular size (active electrons) and/or the presence of large-amplitude internal motions. From the theoretical point of view, both aspects prevent the brute-force use of very accurate but very expensive state-of-the-art quantum-chemical methodologies. From the experimental point of view, both features lead to congested gas-phase spectra, whose assignment and interpretation are not at all straightforward. Based on these premises, this review focuses on the current status and perspectives of the fully a priori prediction of the spectral signatures of medium-sized molecules (containing up to two dozen atoms) in the gas phase with special reference to rotational and vibrational spectroscopies of some representative molecular bricks of life.

5.
Phys Chem Chem Phys ; 26(7): 5802-5821, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38099409

RESUMEN

Computation of accurate geometrical structures and spectroscopic properties of large flexible molecules in the gas-phase is tackled at an affordable cost using a general exploration/exploitation strategy. The most distinctive feature of the approach is the careful selection of different quantum chemical models for energies, geometries and vibrational frequencies with the aim of maximizing the accuracy of the overall description while retaining a reasonable cost for all the steps. In particular, a composite wave-function method is used for energies, whereas a double-hybrid functional (with the addition of core-valence correlation) is employed for geometries and harmonic frequencies and a cheaper hybrid functional for anharmonic contributions. A thorough benchmark based on a wide range of prototypical molecular bricks of life shows that the proposed strategy is close to the accuracy of state-of-the-art composite wave-function methods, and is applicable to much larger systems. A freely available web-utility post-processes the geometries optimized by standard electronic structure codes paving the way toward the accurate yet not prohibitively expensive study of medium- to large-sized molecules by experimentally-oriented researchers.

6.
J Phys Chem A ; 128(24): 4886-4900, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38847454

RESUMEN

The new versions of the Pisa composite scheme introduced in the present paper are based on the careful selection of different quantum chemical models for energies, geometries, and vibrational frequencies, with the aim of maximizing the accuracy of the overall description while retaining a reasonable cost for all the steps. In particular, the computation of accurate electronic energies has been further improved introducing more reliable complete basis set extrapolations and estimation of core-valence correlation, together with improved basis sets for third-row atoms. Furthermore, the reduced-cost frozen natural orbital (FNO) model has been introduced and validated for large molecules. Accurate molecular structures can be obtained avoiding complete basis set extrapolation and evaluating core-valence correlation at the MP2 level. Unfortunately, analytical gradients are not available for the FNO version of the model. Therefore, for large molecules, an accurate reduced-cost alternative is offered by evaluation of valence contributions with a double-hybrid functional in conjunction with the same MP2 contribution for core-valence correlation or by means of a one-parameter approximation. The same double-hybrid functional and basis set are employed to evaluate zero-point energies and partition functions. After the validation of the new models for small systems, a panel of molecular bricks of life has been used to analyze their performances for problems of current fundamental or technological interest. The fully black-box implementation of the computational workflow paves the way toward the accurate yet not prohibitively expensive study of medium- to large-sized molecules also by experimentally oriented researchers.

7.
J Phys Chem A ; 128(7): 1385-1395, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38347709

RESUMEN

An effective yet reliable computational workflow is proposed, which permits the computation of accurate geometrical structures for large flexible molecules at an affordable cost thanks to the integration of machine learning tools and DFT models together with reduced scaling computations of vibrational averaging effects. After validation of the different components of the overall strategy, a panel of molecules of biological interest have been analyzed. The results confirm that very accurate geometrical parameters can be obtained at reasonable cost for molecules including up to about 50 atoms, which are the largest ones for which comparison with high-resolution rotational spectra is possible. Since the whole computational workflow can be followed employing standard electronic structure codes, accurate results for large-sized molecules can be obtained at DFT cost also by nonspecialists.

8.
J Phys Chem A ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38991181

RESUMEN

The so-called semiexperimental (SE) approach is a powerful technique for obtaining highly accurate equilibrium structures for isolated systems. This Featured Article describes its extension to open-shell species, thus providing the first systematic investigation on radical equilibrium geometries to be used for benchmarking purposes. The small yet significant database obtained demonstrates that there is no reduction in accuracy when moving from closed-shell species to radicals. We also provide an extension of the applicability of the SE approach to medium-/large-sized radicals by exploiting the so-called "Lego-brick" approach, which is based on the assumption that a molecular system can be seen as formed by smaller fragments for which the SE equilibrium structure is available. In this Featured Article we show that this model can be successfully applied also to open-shell species.

9.
J Phys Chem A ; 128(13): 2629-2642, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38530336

RESUMEN

A comprehensive analysis of the structural, conformational, and spectroscopic properties in the gas phase has been performed for five prototypical steroid hormones, namely, androsterone, testosterone, estrone, ß-estradiol, and estriol. The revDSD-PBEP86 double-hybrid functional in conjunction with the D3BJ empirical dispersion and a suitable triple-ζ basis set provides accurate conformational energies and equilibrium molecular structures, with the latter being further improved by proper account of core-valence correlation. Average deviations within 0.1% between computed and experimental ground state rotational constants are reached when adding to those equilibrium values vibrational corrections obtained at the cost of standard harmonic frequencies thanks to the use of a new computational tool. Together with the intrinsic interest of the studied hormones, the accuracy of the results obtained at DFT cost for molecules containing about 50 atoms paves the way toward the accurate investigations of other flexible bricks of life.


Asunto(s)
Androsterona , Estrona , Testosterona , Estradiol , Estriol
10.
J Chem Phys ; 161(1)2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38958160

RESUMEN

The structural, conformational, and spectroscopic properties in the gas phase of 20 bicyclic monoterpenes and monoterpenoids have been analyzed by a new accurate, reduced-cost computational strategy. In detail, the revDSD-PBEP86 double-hybrid functional in conjunction with the D3BJ empirical dispersion corrections and a suitable triple-zeta basis set provides accurate geometrical parameters, whence equilibrium rotational constants, which are further improved by proper account of core-valence correlation. Average deviations within 0.1% between computed and experimental rotational constants are reached when taking into account the vibrational corrections obtained by the B3LYP functional in conjunction with a double-zeta basis set in the framework of second-order vibrational perturbation theory. In addition to their intrinsic interest, the studied terpenes further extend the panel of systems for which the proposed strategy has provided accurate results at density functional theory cost. Therefore, a very accurate yet robust and user-friendly tool is now available for systematic investigations of the role of stereo-electronic effects on the properties of large systems of current technological and/or biological interest by experimentally oriented researchers.

11.
Angew Chem Int Ed Engl ; : e202408622, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38982982

RESUMEN

Ethanolamine hydrates containing from one to seven water molecules were identified via rotational spectroscopy with the aid of accurate quantum chemical methods considering anharmonic vibrational corrections. Ethanolamine undergoes significant conformational changes upon hydration to form energetically favorable hydrogen bond networks. The final structures strongly resemble the pure (H2O)3-9 complexes reported before when replacing two water molecules by ethanolamine. The 14N nuclear quadrupole coupling constants of all the ethanolamine hydrates have been determined and show a remarkable correlation with the strength of hydrogen bonds involving the amino group. After addition of the seventh water molecule, both hydrogen atoms of the amino group actively contribute to hydrogen bond formation, reinforcing the network and introducing approximately 21-27% ionicity towards the formation of protonated amine. The findings highlight the critical role of microhydration in altering the electronic environment of ethanolamine, enhancing our understanding of amine hydration dynamics.

12.
Phys Chem Chem Phys ; 25(34): 22768-22774, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37591810

RESUMEN

Accurate computations of structural, conformational and spectroscopic properties in the gas phase have been performed for two α,α-dialkylated α-amino acids, namely aminoisobutyric acid and cyclopropylglycine. Thanks to the integration of modern double hybrid functionals and wave-function methods, several low-energy structures of the title molecules could be analyzed employing standard computer resources. The computed features of all the most stable conformers of the target amino acids closely match the corresponding spectroscopic parameters issued from microwave spectroscopic studies in the gas-phase. Together with their intrinsic interest, the accuracy of the results obtained with reasonable computer times paves the way for accurate investigations of other flexible bricks of life.

13.
Phys Chem Chem Phys ; 25(34): 22840-22850, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37584420

RESUMEN

Vinyl alcohol (VyA) and cyanide (CN) radicals are relatively abundant in the interstellar medium (ISM). VyA is the enolic tautomer of acetaldehyde and has two low-lying conformers, characterized by the syn or anti placement of hydroxyl hydrogen with respect to the double bond. In this paper, we present a gas-phase model of the barrierless reactions of both VyA's conformers with CN employing accurate quantum chemical computations in the framework of a master equation approach based on the transition state theory. Our results indicate that both VyA conformers feature a similar reactivity with CN, starting with a barrierless addition to the double bond and followed by different isomerization, dissociation, and/or hydrogen elimination steps. The rate constants computed for temperatures up to 600 K show that several reaction channels are open even under the harsh conditions of the ISM, with the favoured one providing the first feasible formation route of a prebiotic molecule not yet detected in the ISM, namely cyanoacetaldehyde. This finding suggests looking for cyanoacetaldehyde in regions where both VyA and CN have already been detected, like, e.g., Sagittarius B2N or G+0.693-0.027.

14.
Phys Chem Chem Phys ; 25(45): 31281-31291, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37955344

RESUMEN

Rotational spectroscopy represents an invaluable tool for several applications: from the identification of new molecules in interstellar objects to the characterization of van der Waals complexes, but also for the determination of very accurate molecular structures and for conformational analyses. In this work, we used high-resolution rotational spectroscopic techniques in combination with high-level quantum-chemical calculations to address all these aspects for two isomers of cyanofuran, namely 2-furonitrile and 3-furonitrile. In particular, we have recorded and analyzed the rotational spectra of both of them from 6 to 320 GHz; rotational transitions belonging to several singly-substituted isotopologues have been identified as well. The rotational constants derived in this way have been used in conjunction with computed rotation-vibration interaction constants in order to derive a semi-experimental equilibrium structure for both isomers. Moreover, we observed the rotational spectra of four different intermolecular adducts formed by furonitrile and water, whose identification has been supported by a conformational analysis and a theoretical spectroscopic characterization. A semi-experimental determination of the intermolecular parameters has been achieved for all of them and the results have been compared with those obtained for the analogous system formed by benzonitrile and water.

15.
J Phys Chem A ; 127(16): 3648-3657, 2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37052318

RESUMEN

A general strategy for the accurate computation of conformational and spectroscopic properties of flexible molecules in the gas phase is applied to two representative proteinogenic amino acids with aromatic side chains, namely, phenylalanine and tyrosine. The main features of all the most stable conformers predicted by this computational strategy closely match those of the species detected in microwave and infrared experiments. Together with their intrinsic interest, the accuracy of the results obtained with reasonable computer times paves the route for accurate investigations of other flexible bricks of life.

16.
J Phys Chem A ; 127(49): 10517-10527, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38033327

RESUMEN

A new approach to computation at affordable cost of accurate geometrical structures and rotational constants for medium-sized molecules in the gas phase is further improved and applied to a large panel of interstellar complex organic molecules. The most distinctive feature of the new model is the effective inclusion of core-valence correlation and vibrational averaging effects in the framework of density functional theory (DFT). In particular, a double-hybrid functional in conjunction with a quadruple-ζ valence/triple-ζ polarization basis set is employed for geometry optimizations, whereas a cheaper hybrid functional in conjunction with a split-valence basis set is used for the evaluation of vibrational corrections. A thorough benchmark based on a wide range of prototypical systems shows that the new scheme approaches the accuracy of state-of-the-art wave function methods with the computational cost of the standard methods (DFT or MP2) routinely employed in the interpretation of microwave spectra. Since the whole computational workflow involves the postprocessing of the output of standard electronic structure codes by a new freely available web utility, the way is paved for the accurate yet not prohibitively expensive study of medium- to large-sized molecules also by nonspecialists.

17.
J Phys Chem A ; 127(24): 5183-5192, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37285168

RESUMEN

The SE100 database collecting accurate equilibrium geometries of medium size molecules obtained by the semiexperimental (SE) approach has been extended to species containing Br and I atoms. This has allowed the determination of accurate linear regressions between DFT and SE values for all the main bonds and angles involving H, B, C, N, O, F, P, S, Cl, Br, and I atoms. An improved Nano-LEGO tool has been developed, which is based on suitable hybrid and double hybrid functionals and combines in a fully coherent way the templating molecule and linear regression approaches. A number of case studies show that the new Nano LEGO tool provides geometrical parameters on par with state-of-the-art composite wave function methods, but can be routinely applied to medium- to large-size molecules. The accuracy reached for structural parameters is mirrored on rotational constants that can be predicted with an average error within 0.2%.

18.
J Phys Chem A ; 127(32): 6771-6778, 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37535450

RESUMEN

A general strategy for the accurate computation of structural and spectroscopic properties of biomolecule building blocks in the gas phase is proposed and validated for tautomeric equilibria. The main features of the new model are the inclusion of core-valence correlation in geometry optimizations by a double hybrid functional and the systematic use of wave-function composite methods in conjunction with cc-pVnZ-F12 basis sets with separate extrapolation of MP2 and post-MP2 contributions. The resulting Pisa composite scheme employing conventional (PCS) or explicitly correlated (PCS-F12) approaches is applied to the challenging problem of guanine tautomers in the gas phase. The results are in remarkable agreement with the experimental structures, relative stabilities, and spectroscopic signatures of different tautomers. The accuracy of the results obtained at reasonable cost by means of black-box parameter-free approaches paves the way toward systematic investigations of other molecular bricks of life also by non-specialists.

19.
J Phys Chem A ; 127(36): 7534-7543, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37665117

RESUMEN

A new computational strategy has been applied to the conformational and spectroscopic properties in the gas phase of amino acids with very distinctive features, ranging from different tautomeric forms (histidine) to ring puckering (proline), and heteroaromatic structures with non-equivalent rings (tryptophan). The integration of modern double-hybrid functionals and wave-function composite methods has allowed us to obtain accurate results for a large panel of conformers with reasonable computer times. The remarkable agreement between computations and microwave experiments allows an unbiased interpretation of the latter in terms of stereoelectronic effects.

20.
J Chem Phys ; 159(8)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37606326

RESUMEN

An unsupervised computational protocol is proposed with the aim of obtaining accurate structures of large molecules in the gas phase at the cost of standard density functional theory (DFT) computations. The whole workflow is fully automated and provides optimized equilibrium geometries and ground state rotational constants to be directly compared with experiments. The results for a panel of molecules of biological or medicinal interest show that the accuracy of the results delivered by the new tool at the cost of a single DFT geometry optimization is close to that delivered by state-of-the-art composite wavefunction methods for small semi-rigid molecules.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA