Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanoscale ; 16(28): 13416-13424, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38895999

RESUMEN

Metal-porphyrins are studied intensively due their potential applications, deriving from the variety of electronic and chemical properties, tunable by selecting metal centers and functional groups. Metalation, de- and trans-metalation processes are fundamental in this sense to investigate both the synthesis and the stability of these molecular building blocks. More specifically, Pd coordination in tetrapyrroles revealed to be potentially interesting in the fields of cancer therapy, drug delivery and light harvesting. Thus, we focused on the stability of palladium tetraphenyl porphyrins (PdTPPs) on a copper surface by means of combined spectroscopy and microscopy approaches. We find that PdTPPs undergo coverage-dependent trans-metalation accompanied by steric rearrangements already at room temperature, and fully trans-metalate to CuTPPs upon mild annealing. Side reactions such as (cyclo)-dehydrogenation and structural reorganization affect the molecular layer, with Pd-Cu alloying and segregation occurring at higher temperature. Instead, oxygen passivation of the Cu support prevents the metal-involving reactions, thus preserving the layer and increasing the chemical and temperature stability of the Pd porphyrins.

2.
ACS Nano ; 18(20): 12749-12759, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38726650

RESUMEN

The complexity of the geometric and electronic structure of boron allotropes is associated with the multicentric bonding character and the consequent B polymorphism. When growth is limited to two-dimensions (2D), the structural and electronic confinement yields the borophenes family, where the interaction with the templating substrate actually determines the stability of inequivalent boron phases. We report here a detailed study of the growth of the honeycomb AlB2 phase on Al(111), followed by an investigation of its oxidation and reduction properties. By means of a combined experimental and theoretical approach, we show that the structure of the B/Al interface is affected by the complex interplay between B, Al, and common reactive agents like oxygen and hydrogen. While kinetic effects associated with diffusion and strain release influence the AlB2 growth in vacuo, Al, B, O, and H chemical affinities determine its redox behavior. Reduction with atomic hydrogen involves the B layer and yields an ordered honeycomb borophane H/AlB2 phase. Instead, oxidation takes place at the Al interface, giving origin to buried and 1D surface aluminum oxide phases.

3.
Nanoscale ; 15(45): 18407-18414, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37936532

RESUMEN

The recent interest in characterizing 2D boron polymorphs has led to claims of the first stabilization of a honeycomb phase with conical Dirac-like electron dispersion. However, the synthesis of chemically stable, single, and homogeneous 2D boron phases still represents a significant experimental challenge. This is ascribed to the intrinsic boron electronic configuration that, at variance with carbon, leads to the formation of multi-center covalent bonds. External charge compensation by substrate-induced doping can steer the geometry of the layer, both in the buckling and in the density of B vacancies, like in the case of the recently achieved stabilization of honeycomb boron layers on Al(111). The price to pay is however a strong boron-support interaction, resulting in general in a limiting kinetic hindrance with respect to the synthesis of homogenous single phases. In the specific case of Al(111) an AlB2 layer is known to form at the surface, quite far from a desirable quasi-freestanding borophene monolayer and at variance with graphene, which can be easily synthesized in an almost freestanding configuration e.g. on Ir(111). We provide here evidence for the (reversible) formation of well-ordered honeycomb borophane upon hydrogenation of the honeycomb boron phase on Al(111).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA