Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Mol Cell Cardiol ; 91: 11-22, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26718721

RESUMEN

Ischemia/reperfusion, which is characterized by deficient oxygen supply and subsequent restoration of blood flow, can cause irreversible damages to tissue. Mechanisms contributing to the pathogenesis of ischemia reperfusion injury are complex, multifactorial and highly integrated. Extensive research has focused on increasing organ tolerance to ischemia reperfusion injury, especially through the use of ischemic conditioning strategies. Of morbidities that potentially compromise the protective mechanisms of the heart, diabetes mellitus appears primarily important to study. Diabetes mellitus increases myocardial susceptibility to ischemia reperfusion injury and also modifies myocardial responses to ischemic conditioning strategies by disruption of intracellular signaling responsible for enhancement of resistance to cell death. The purpose of this review is twofold: first, to summarize mechanisms underlying ischemia reperfusion injury and the signal transduction pathways underlying ischemic conditioning cardioprotection; and second, to focus on diabetes mellitus and mechanisms that may be responsible for the lack of effect of ischemic conditioning strategies in diabetes.


Asunto(s)
Diabetes Mellitus/terapia , Precondicionamiento Isquémico Miocárdico , Infarto del Miocardio/terapia , Daño por Reperfusión Miocárdica/prevención & control , Animales , Apoptosis , Calcio/metabolismo , Complicaciones de la Diabetes , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología , Estrés del Retículo Endoplásmico , Humanos , Infarto del Miocardio/complicaciones , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/complicaciones , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Estrés Oxidativo , Transducción de Señal
2.
Sci Rep ; 11(1): 2656, 2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33514765

RESUMEN

Accurate modelling of particle shrinkage during biomass pyrolysis is key to the production of biochars with specific morphologies. Such biochars represent sustainable solutions to a variety of adsorption-dependent environmental remediation challenges. Modelling of particle shrinkage during biomass pyrolysis has heretofore been based solely on theory and ex-situ experimental data. Here we present the first in-situ phase-contrast X-ray imaging study of biomass pyrolysis. A novel reactor was developed to enable operando synchrotron radiography of fixed beds of pyrolysing biomass. Almond shell particles experienced more bulk shrinkage and less change in porosity than did walnut shell particles during pyrolysis, despite their similar composition. Alkaline pretreatment was found to reduce this difference in feedstock behaviour. Ex-situ synchrotron X-ray microtomography was performed to study the effects of pyrolysis on pore morphology. Pyrolysis led to a redistribution of pores away from particle surfaces, meaning newly formed surface area may be less accessible to adsorbates.


Asunto(s)
Biomasa , Calor , Modelos Químicos , Pirólisis , Sincrotrones , Microtomografía por Rayos X
3.
Plast Reconstr Surg ; 145(1): 116-126, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31881612

RESUMEN

BACKGROUND: Radiofibrosis of breast tissue compromises breast reconstruction by interfering with tissue viability and healing. Autologous fat transfer may reduce radiotherapy-related tissue injury, but graft survival is compromised by the fibrotic microenvironment. Elevated expression of receptor for hyaluronan-mediated motility (RHAMM; also known as hyaluronan-mediated motility receptor, or HMMR) in wounds decreases adipogenesis and increases fibrosis. The authors therefore developed RHAMM peptide mimetics to block RHAMM profibrotic signaling following radiation. They propose that this blocking peptide will decrease radiofibrosis and establish a microenvironment favoring adipose-derived stem cell survival using a rat mammary fat pad model. METHODS: Rat mammary fat pads underwent a one-time radiation dose of 26 Gy. Irradiated (n = 10) and nonirradiated (n = 10) fat pads received a single intramammary injection of a sham injection or peptide NPI-110. Skin changes were examined clinically. Mammary fat pad tissue was processed for fibrotic and adipogenic markers using quantitative polymerase chain reaction and immunohistochemical analysis. RESULTS: Clinical assessments and molecular analysis confirmed radiation-induced acute skin changes and radiation-induced fibrosis in rat mammary fat pads. Peptide treatment reduced fibrosis, as detected by polarized microscopy of picrosirius red staining, increased collagen ratio of 3:1, reduced expression of collagen-1 crosslinking enzymes lysyl-oxidase, transglutaminase 2, and transforming growth factor ß1 protein, and increased adiponectin, an antifibrotic adipokine. RHAMM was expressed in stromal cell subsets and was downregulated by the RHAMM peptide mimetic. CONCLUSION: Results from this study predict that blocking RHAMM function in stromal cell subsets can provide a postradiotherapy microenvironment more suitable for fat grafting and breast reconstruction.


Asunto(s)
Tejido Adiposo/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Fibrosis/metabolismo , Receptores de Hialuranos/metabolismo , Traumatismos Experimentales por Radiación/metabolismo , Adipogénesis/efectos de los fármacos , Adipogénesis/fisiología , Animales , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Fibrosis/tratamiento farmacológico , Péptidos/farmacología , Proteína Glutamina Gamma Glutamiltransferasa 2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA