Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
G3 (Bethesda) ; 12(10)2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-35736356

RESUMEN

Drosophila sechellia is an island endemic host specialist that has evolved to consume the toxic fruit of Morinda citrifolia, also known as noni fruit. Recent studies by our group and others have examined genome-wide gene expression responses of fruit flies to individual highly abundant compounds found in noni responsible for the fruit's unique chemistry and toxicity. In order to relate these reductionist experiments to the gene expression responses to feeding on noni fruit itself, we fed rotten noni fruit to adult female D. sechellia and performed RNA-sequencing. Combining the reductionist and more wholistic approaches, we have identified candidate genes that may contribute to each individual compound and those that play a more general role in response to the fruit as a whole. Using the compound specific and general responses, we used transcription factor prediction analyses to identify the regulatory networks and specific regulators involved in the responses to each compound and the fruit itself. The identified genes and regulators represent the possible genetic mechanisms and biochemical pathways that contribute to toxin resistance and noni specialization in D. sechellia.


Asunto(s)
Drosophila , Morinda , Animales , Dieta , Drosophila/genética , Femenino , Genómica , Morinda/química , ARN , Factores de Transcripción
2.
G3 (Bethesda) ; 12(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34718544

RESUMEN

Drosophila sechellia is a dietary specialist endemic to the Seychelles islands that has evolved to consume the fruit of Morinda citrifolia. When ripe, the fruit of M. citrifolia contains octanoic acid and hexanoic acid, two medium-chain fatty acid volatiles that deter and are toxic to generalist insects. Drosophila sechellia has evolved resistance to these volatiles allowing it to feed almost exclusively on this host plant. The genetic basis of octanoic acid resistance has been the focus of multiple recent studies, but the mechanisms that govern hexanoic acid resistance in D. sechellia remain unknown. To understand how D. sechellia has evolved to specialize on M. citrifolia fruit and avoid the toxic effects of hexanoic acid, we exposed adult D. sechellia, D. melanogaster and D. simulans to hexanoic acid and performed RNA sequencing comparing their transcriptional responses to identify D. sechellia specific responses. Our analysis identified many more genes responding transcriptionally to hexanoic acid in the susceptible generalist species than in the specialist D. sechellia. Interrogation of the sets of differentially expressed genes showed that generalists regulated the expression of many genes involved in metabolism and detoxification whereas the specialist primarily downregulated genes involved in the innate immunity. Using these data, we have identified interesting candidate genes that may be critically important in aspects of adaptation to their food source that contains high concentrations of HA. Understanding how gene expression evolves during dietary specialization is crucial for our understanding of how ecological communities are built and how evolution shapes trophic interactions.


Asunto(s)
Drosophila melanogaster , Drosophila , Animales , Caproatos/metabolismo , Caproatos/toxicidad , Drosophila/fisiología , Drosophila melanogaster/genética , Genómica , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA