Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Trends Genet ; 40(5): 422-436, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38458877

RESUMEN

Bdelloid rotifers constitute a class of microscopic animals living in freshwater habitats worldwide. Several strange features of bdelloids have drawn attention: their ability to tolerate desiccation and other stresses, a lack of reported males across the clade despite centuries of study, and unusually high numbers of horizontally acquired, non-metazoan genes. Genome sequencing is transforming our understanding of their lifestyle and its consequences, while in turn providing wider insights about recombination and genome organisation in animals. Many questions remain, not least how to reconcile apparent genomic signatures of sex with the continued absence of reported males, why bdelloids have so many horizontally acquired genes, and how their remarkable ability to survive stress interacts with recombination and other genomic processes.


Asunto(s)
Transferencia de Gen Horizontal , Recombinación Genética , Rotíferos , Estrés Fisiológico , Animales , Rotíferos/genética , Rotíferos/fisiología , Transferencia de Gen Horizontal/genética , Estrés Fisiológico/genética , Reproducción Asexuada/genética , Genoma/genética , Genoma de los Helmintos , Filogenia , Masculino
2.
J Evol Biol ; 37(6): 616-627, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38599591

RESUMEN

The endpoint of speciation has been viewed as complete isolation and the absence of gene flow between species. If the influx of genes from another species is maladaptive because species have different adaptations and genetic backgrounds, selection should favour the closing of species boundaries and zero gene flow, a process known as reinforcement. Recently, numerous cases of gene flow between species have been identified, many of which involved adaptive introgression of beneficial alleles. These cases could reflect transient states on the way to closed species boundaries or the result of declining strength or efficacy of selection for reinforcement as the level of gene flow approaches zero. An alternative hypothesis, however, is that selection favours porous species boundaries that allow beneficial alleles to cross, especially in changing environments. This perspective evaluates the conditions that would be needed for selection to favour porous species boundaries and the evidence for them. A contrast is made between hybridization in sexual eukaryotes and gene transfer via homologous recombination in bacteria. Current evidence is inconclusive on whether non-zero gene flow is favoured by selection. Studies are needed that quantify selection gradients on rates of gene flow and test for evolution towards intermediate values, especially experiments that manipulate conditions and track evolution for multiple generations. Estimation of gene flow networks for more clades and regional assemblages using emerging genome data will also allow the evolutionary determinants of interspecific gene flow to be better understood.


Asunto(s)
Flujo Génico , Especiación Genética , Selección Genética , Hibridación Genética , Animales
3.
PLoS Biol ; 18(10): e3000894, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33064736

RESUMEN

Developing a thorough understanding of how ectotherm physiology adapts to different thermal environments is of crucial importance, especially in the face of global climate change. A key aspect of an organism's thermal performance curve (TPC)-the relationship between fitness-related trait performance and temperature-is its thermal sensitivity, i.e., the rate at which trait values increase with temperature within its typically experienced thermal range. For a given trait, the distribution of thermal sensitivities across species, often quantified as "activation energy" values, is typically right-skewed. Currently, the mechanisms that generate this distribution are unclear, with considerable debate about the role of thermodynamic constraints versus adaptive evolution. Here, using a phylogenetic comparative approach, we study the evolution of the thermal sensitivity of population growth rate across phytoplankton (Cyanobacteria and eukaryotic microalgae) and prokaryotes (bacteria and archaea), 2 microbial groups that play a major role in the global carbon cycle. We find that thermal sensitivity across these groups is moderately phylogenetically heritable, and that its distribution is shaped by repeated evolutionary convergence throughout its parameter space. More precisely, we detect bursts of adaptive evolution in thermal sensitivity, increasing the amount of overlap among its distributions in different clades. We obtain qualitatively similar results from evolutionary analyses of the thermal sensitivities of 2 physiological rates underlying growth rate: net photosynthesis and respiration of plants. Furthermore, we find that these episodes of evolutionary convergence are consistent with 2 opposing forces: decrease in thermal sensitivity due to environmental fluctuations and increase due to adaptation to stable environments. Overall, our results indicate that adaptation can lead to large and relatively rapid shifts in thermal sensitivity, especially in microbes for which rapid evolution can occur at short timescales. Thus, more attention needs to be paid to elucidating the implications of rapid evolution in organismal thermal sensitivity for ecosystem functioning.


Asunto(s)
Adaptación Fisiológica , Evolución Biológica , Crecimiento Demográfico , Temperatura , Bases de Datos como Asunto , Patrón de Herencia/genética , Modelos Biológicos , Filogenia , Fitoplancton/fisiología , Células Procariotas/metabolismo , Especificidad de la Especie
4.
Am J Bot ; 109(2): 272-290, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34730230

RESUMEN

PREMISE: Plants have evolved different ecological strategies in response to environmental challenges, and a higher lability of such strategies is more common in plant groups that adapt to various niches. Crassula (Crassulaceae), occurring in varied mesic to xeric habitats, exhibits a remarkable diversity of life-forms. However, whether any particular life-form trait has shaped species diversification in Crassula has remained unexplored. This study aims to investigate diversification patterns within Crassula and identify potential links to its life-form evolution. METHODS: A phylogenetic tree of 140 Crassula taxa was reconstructed using plastid and nuclear loci and dated based on the nuclear DNA information only. We reconstructed ancestral life-form characters to estimate the evolutionary trends of ecophysiological change, and subsequently estimated net diversification rates. Multiple diversification models were applied to examine the association between certain life-forms and net diversification rates. RESULTS: Our findings confirm a radiation within Crassula in the last 10 million years. A configuration of net diversification rate shifts was detected, which coincides with the emergence of a speciose lineage during the late Miocene. The results of ancestral state reconstruction demonstrate a high lability of life-forms in Crassula, and the trait-dependent diversification analyses revealed that the increased diversification is strongly associated with a compact growth form. CONCLUSIONS: Transitions between life-forms in Crassula seem to have driven adaptation and shaped diversification of this genus across various habitats. The diversification patterns we inferred are similar to those observed in other major succulent lineages, with the most-speciose clades originating in the late Miocene.


Asunto(s)
Crassulaceae , Adaptación Fisiológica , Evolución Biológica , Ecosistema , Filogenia , Plastidios/genética
5.
BMC Genomics ; 22(1): 404, 2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-34082717

RESUMEN

BACKGROUND: Nearly 50% of crop yields are lost to pests and disease, with plants and pathogens locked in an amplified co-evolutionary process of disease outbreaks. Coffee wilt disease, caused by Fusarium xylarioides, decimated coffee production in west and central Africa following its initial outbreak in the 1920s. After successful management, it later re-emerged and by the 2000s comprised two separate epidemics on arabica coffee in Ethiopia and robusta coffee in east and central Africa. RESULTS: Here, we use genome sequencing of six historical culture collection strains spanning 52 years to identify the evolutionary processes behind these repeated outbreaks. Phylogenomic reconstruction using 13,782 single copy orthologs shows that the robusta population arose from the initial outbreak, whilst the arabica population is a divergent sister clade to the other strains. A screen for putative effector genes involved in pathogenesis shows that the populations have diverged in gene content and sequence mainly by vertical processes within lineages. However, 15 putative effector genes show evidence of horizontal acquisition, with close homology to genes from F. oxysporum. Most occupy small regions of homology within wider scaffolds, whereas a cluster of four genes occupy a 20Kb scaffold with strong homology to a region on a mobile pathogenicity chromosome in F. oxysporum that houses known effector genes. Lacking a match to the whole mobile chromosome, we nonetheless found close associations with DNA transposons, especially the miniature impala type previously proposed to facilitate horizontal transfer of pathogenicity genes in F. oxysporum. These findings support a working hypothesis that the arabica and robusta populations partly acquired distinct effector genes via transposition-mediated horizontal transfer from F. oxysporum, which shares coffee as a host and lives on other plants intercropped with coffee. CONCLUSION: Our results show how historical genomics can help reveal mechanisms that allow fungal pathogens to keep pace with our efforts to resist them. Our list of putative effector genes identifies possible future targets for fungal control. In turn, knowledge of horizontal transfer mechanisms and putative donor taxa might help to design future intercropping strategies that minimize the risk of transfer of effector genes between closely-related Fusarium taxa.


Asunto(s)
Fusarium , Café , Brotes de Enfermedades , Etiopía , Fusarium/genética , Genómica , Enfermedades de las Plantas
6.
Am Nat ; 198(4): 473-488, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34559608

RESUMEN

AbstractPlasmids are extrachromosomal segments of DNA that can transfer genes between bacterial cells. Many plasmid genes benefit bacteria but cause harm to human health by granting antibiotic resistance to pathogens. Transfer rate is a key parameter for predicting plasmid dynamics, but observed rates are highly variable, and the effects of selective forces on their evolution are unclear. We apply evolutionary analysis to plasmid conjugation models to investigate selective pressures affecting plasmid transfer rate, emphasizing host versus plasmid control, the costs of plasmid transfer, and the role of recipient cells. Our analyses show that plasmid-determined transfer rates can be predicted with three parameters (host growth rate, plasmid loss rate, and the cost of plasmid transfer on growth) under some conditions. We also show that low-frequency genetic variation in transfer rate can accumulate, facilitating rapid adaptation to changing conditions. Furthermore, reduced transfer rates due to host control have limited effects on plasmid prevalence until low enough to prevent plasmid persistence. These results provide a framework to predict plasmid transfer rate evolution in different environments and demonstrate the limited impact of host mechanisms to control the costs incurred when plasmids are present.


Asunto(s)
Bacterias , Transferencia de Gen Horizontal , Adaptación Fisiológica , Bacterias/genética , Farmacorresistencia Microbiana , Humanos , Plásmidos/genética
7.
Environ Microbiol ; 23(10): 6089-6103, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34190398

RESUMEN

Rhizobacterial communities are important for plant health but we still have limited understanding of how they are constructed or how they can be manipulated. High-throughput 16S rRNA sequencing provides good information on taxonomic composition but remains an unreliable proxy for phenotypes. In this study, we tested the hypothesis that experimentally observed functional traits would be better predictors of community membership than phylogenetic origin. To test this hypothesis, we sampled communities on four plant species grown in two soil types and characterized 593 bacterial isolates in terms of antibiotic susceptibility, carbon metabolism, resource use and plant growth-promoting traits. In support of our hypothesis we found that three of the four plant species had phylogenetically diverse, but functionally constrained communities. Notably, communities did not grow best on complex media mimicking their host of origin but were distinguished by variation in overall growth characteristics (copiotrophy/oligotrophy) and antibiotic susceptibility. These data, combined with variation in phylogenetic structure, suggest that different classes of traits (antagonistic competition or resource-based) are more important in different communities. This culture-based approach supports and complements the findings of a previous high-throughput 16S rRNA analysis of this experiment and provides functional insights into the patterns observed with culture-independent methods.


Asunto(s)
Rizosfera , Microbiología del Suelo , Filogenia , Raíces de Plantas/microbiología , ARN Ribosómico 16S/genética , Suelo
8.
PLoS Biol ; 16(4): e2004830, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29689044

RESUMEN

Bdelloid rotifers are a class of microscopic invertebrates that have existed for millions of years apparently without sex or meiosis. They inhabit a variety of temporary and permanent freshwater habitats globally, and many species are remarkably tolerant of desiccation. Bdelloids offer an opportunity to better understand the evolution of sex and recombination, but previous work has emphasised desiccation as the cause of several unusual genomic features in this group. Here, we present high-quality whole-genome sequences of 3 bdelloid species: Rotaria macrura and R. magnacalcarata, which are both desiccation intolerant, and Adineta ricciae, which is desiccation tolerant. In combination with the published assembly of A. vaga, which is also desiccation tolerant, we apply a comparative genomics approach to evaluate the potential effects of desiccation tolerance and asexuality on genome evolution in bdelloids. We find that ancestral tetraploidy is conserved among all 4 bdelloid species, but homologous divergence in obligately aquatic Rotaria genomes is unexpectedly low. This finding is contrary to current models regarding the role of desiccation in shaping bdelloid genomes. In addition, we find that homologous regions in A. ricciae are largely collinear and do not form palindromic repeats as observed in the published A. vaga assembly. Consequently, several features interpreted as genomic evidence for long-term ameiotic evolution are not general to all bdelloid species, even within the same genus. Finally, we substantiate previous findings of high levels of horizontally transferred nonmetazoan genes in both desiccating and nondesiccating bdelloid species and show that this unusual feature is not shared by other animal phyla, even those with desiccation-tolerant representatives. These comparisons call into question the proposed role of desiccation in mediating horizontal genetic transfer.


Asunto(s)
Adaptación Fisiológica/genética , Especiación Genética , Genoma de los Helmintos , Rotíferos/genética , Sintenía , Animales , Desecación , Ecosistema , Agua Dulce , Transferencia de Gen Horizontal , Genómica/métodos , Filogenia , Rotíferos/clasificación , Tetraploidía , Secuenciación Completa del Genoma
9.
Mol Ecol ; 29(21): 4170-4185, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32881172

RESUMEN

Hybridization has the potential to generate or homogenize biodiversity and is a particularly common phenomenon in plants, with an estimated 25% of plant species undergoing interspecific gene flow. However, hybridization in Amazonia's megadiverse tree flora was assumed to be extremely rare despite extensive sympatry between closely related species, and its role in diversification remains enigmatic because it has not yet been examined empirically. Using members of a dominant Amazonian tree family (Brownea, Fabaceae) as a model to address this knowledge gap, our study recovered extensive evidence of hybridization among multiple lineages across phylogenetic scales. More specifically, using targeted sequence capture our results uncovered several historical introgression events between Brownea lineages and indicated that gene tree incongruence in Brownea is best explained by reticulation, rather than solely by incomplete lineage sorting. Furthermore, investigation of recent hybridization using ~19,000 ddRAD loci recovered a high degree of shared variation between two Brownea species that co-occur in the Ecuadorian Amazon. Our analyses also showed that these sympatric lineages exhibit homogeneous rates of introgression among loci relative to the genome-wide average, implying a lack of selection against hybrid genotypes and persistent hybridization. Our results demonstrate that gene flow between multiple Amazonian tree species has occurred across temporal scales, and contrasts with the prevailing view of hybridization's rarity in Amazonia. Overall, our results provide novel evidence that reticulate evolution influenced diversification in part of the Amazonian tree flora, which is the most diverse on Earth.


Asunto(s)
Flujo Génico , Hibridación Genética , Brasil , Genoma , Filogenia
10.
Mol Phylogenet Evol ; 144: 106668, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31682924

RESUMEN

Nepenthaceae is one of the largest carnivorous plant families and features ecological and morphological adaptations indicating an impressive adaptive radiation. However, investigation of evolutionary and taxonomic questions is hindered by poor phylogenetic understanding, with previous molecular studies based on limited loci and taxa. We use high-throughput sequencing with a target-capture methodology based on a 353-loci, probe set to recover sequences for 197 samples, representing 151 described or putative Nepenthes species. Phylogenetic analyses were performed using supermatrix and maximum quartet species tree approaches. Our analyses confirm five Western outlier taxa, followed by N. danseri, as successively sister to the remainder of the group. We also find mostly consistent recovery of two major Southeast Asian clades. The first contains common or widespread lowland species plus a Wallacean-New Guinean clade. Within the second clade, sects. Insignes and Tentaculatae are well supported, while geographically defined clades representing Sumatra, Indochina, Peninsular Malaysia, Palawan, Mindanao and Borneo are also consistently recovered. However, we find considerable conflicting signal at the site and locus level, and often unstable backbone relationships. A handful of Bornean taxa are inconsistently placed and require further investigation. We make further suggestions for a modified infra-generic classification of genus Nepenthes.


Asunto(s)
Caryophyllales/clasificación , Caryophyllales/genética , Filogenia , Animales , Evolución Biológica , Borneo , Carnivoría , ADN de Plantas/análisis , Secuenciación de Nucleótidos de Alto Rendimiento , Indochina , Indonesia , Filipinas , Filogeografía , Análisis de Secuencia de ADN , Seychelles
11.
Plasmid ; 108: 102489, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31926878

RESUMEN

Plasmids transfer at highly variable rates that spread over 10 orders of magnitude. While rates have been measured for decades and it is known that the rates are affected bysome biotic and abiotic factors, it is unclear how and to what extent these factors determine the rates of transfer. We performed a meta-analysis of 1224 published transfer rates from 33 papers (filtered to 612 transfer rates) to assess this variation. Over three quarters of the variation can be predicted, with plasmid repression and media type (solid versus liquid) identified as general variables explaining the most variation. Of the host and plasmid identities, identity of the recipient bacterium explained the most variation, up to 34% in some models, and more than any other explanatory variable. These results emphasize the role of the recipient in determining the rate of transfer, and show an improved range of transfer values and their correlates that can be used in future when modeling plasmid persistence.


Asunto(s)
Conjugación Genética , Transferencia de Gen Horizontal , Plásmidos/genética , Algoritmos , Bacterias/genética , Escherichia coli/genética , Modelos Biológicos
12.
Mol Phylogenet Evol ; 126: 279-292, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29702213

RESUMEN

The flora of the Neotropics is unmatched in its diversity, however the mechanisms by which diversity has accumulated are debated and largely unclear. The Brownea clade (Leguminosae) is a characteristic component of the Neotropical flora, and the species within it are diverse in their floral morphology, attracting a wide variety of pollinators. This investigation aimed to estimate species divergence times and infer relationships within the group, in order to test whether the Brownea clade followed the 'cradle' or 'museum' model of diversification, i.e. whether species evolved rapidly over a short time period, or gradually over many millions of years. We also aimed to trace the spatio-temporal evolution of the clade by estimating ancestral biogeographical patterns in the group. We used BEAST to build a dated phylogeny of 73 Brownea clade species using three molecular markers (ITS, trnK and psbA-trnH), resulting in well-resolved phylogenetic relationships within the clade, as well as robust divergence time estimates from which we inferred diversification rates and ancestral biogeography. Our analyses revealed an Eocene origin for the group, after which the majority of diversification happened in Amazonia during the Miocene, most likely concurrent with climatic and geological changes caused by the rise of the Andes. We found no shifts in diversification rate over time, suggesting a gradual accumulation of lineages with low extinction rates. These results may help to understand why Amazonia is host to the highest diversity of tree species on Earth.


Asunto(s)
Evolución Biológica , Fabaceae/clasificación , Árboles/clasificación , Clima Tropical , Biodiversidad , Calibración , Fósiles , Filogenia , Filogeografía , América del Sur , Factores de Tiempo
13.
Syst Biol ; 65(5): 759-71, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27055648

RESUMEN

Multilocus sequence data provide far greater power to resolve species limits than the single locus data typically used for broad surveys of clades. However, current statistical methods based on a multispecies coalescent framework are computationally demanding, because of the number of possible delimitations that must be compared and time-consuming likelihood calculations. New methods are therefore needed to open up the power of multilocus approaches to larger systematic surveys. Here, we present a rapid and scalable method that introduces 2 new innovations. First, the method reduces the complexity of likelihood calculations by decomposing the tree into rooted triplets. The distribution of topologies for a triplet across multiple loci has a uniform trinomial distribution when the 3 individuals belong to the same species, but a skewed distribution if they belong to separate species with a form that is specified by the multispecies coalescent. A Bayesian model comparison framework was developed and the best delimitation found by comparing the product of posterior probabilities of all triplets. The second innovation is a new dynamic programming algorithm for finding the optimum delimitation from all those compatible with a guide tree by successively analyzing subtrees defined by each node. This algorithm removes the need for heuristic searches used by current methods, and guarantees that the best solution is found and potentially could be used in other systematic applications. We assessed the performance of the method with simulated, published, and newly generated data. Analyses of simulated data demonstrate that the combined method has favorable statistical properties and scalability with increasing sample sizes. Analyses of empirical data from both eukaryotes and prokaryotes demonstrate its potential for delimiting species in real cases.


Asunto(s)
Algoritmos , Clasificación/métodos , Filogenia , Animales , Teorema de Bayes , Simulación por Computador , Eucariontes/clasificación , Cadenas de Markov , Método de Montecarlo , Células Procariotas/clasificación , Especificidad de la Especie
15.
Am Nat ; 187(2): 236-48, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26807750

RESUMEN

Theory predicts that immigration can either enhance or impair the rate at which species and whole communities adapt to environmental change, depending on the traits of genotypes and species in the source pool relative to local conditions. These responses, in turn, will determine how well whole communities function in changing environments. We tested the effects of immigration and experimental warming on microbial communities during an 81-day field experiment. The effects of immigration depended on the warming treatment. In warmed communities, immigration was detrimental to community growth, whereas in ambient communities it was beneficial. This result is explained by colonists coming from a local species pool preadapted to ambient conditions. Loss of metabolic diversity, however, was buffered by immigration in both environments. Communities showed increasing local adaptation to temperature conditions during the experiment, and this was independent of whether they received immigration. Genotypes that comprised the communities were not locally adapted, however, indicating that community local adaptation can be independent of adaptation of component genotypes. Our results are consistent with a greater role for species interactions rather than adaptation of constituent species in determining local adaptation of whole communities and confirm that immigration can either enhance or impair community responses to environmental change depending on the environmental context.


Asunto(s)
Biodiversidad , Agua Dulce/microbiología , Calor , Microbiota , Aclimatación
16.
BMC Biol ; 13: 90, 2015 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-26537913

RESUMEN

BACKGROUND: Although prevalent in prokaryotes, horizontal gene transfer (HGT) is rarer in multicellular eukaryotes. Bdelloid rotifers are microscopic animals that contain a higher proportion of horizontally transferred, non-metazoan genes in their genomes than typical of animals. It has been hypothesized that bdelloids incorporate foreign DNA when they repair their chromosomes following double-strand breaks caused by desiccation. HGT might thereby contribute to species divergence and adaptation, as in prokaryotes. If so, we expect that species should differ in their complement of foreign genes, rather than sharing the same set of foreign genes inherited from a common ancestor. Furthermore, there should be more foreign genes in species that desiccate more frequently. We tested these hypotheses by surveying HGT in four congeneric species of bdelloids from different habitats: two from permanent aquatic habitats and two from temporary aquatic habitats that desiccate regularly. RESULTS: Transcriptomes of all four species contain many genes with a closer match to non-metazoan genes than to metazoan genes. Whole genome sequencing of one species confirmed the presence of these foreign genes in the genome. Nearly half of foreign genes are shared between all four species and an outgroup from another family, but many hundreds are unique to particular species, which indicates that HGT is ongoing. Using a dated phylogeny, we estimate an average of 12.8 gains versus 2.0 losses of foreign genes per million years. Consistent with the desiccation hypothesis, the level of HGT is higher in the species that experience regular desiccation events than those that do not. However, HGT still contributed hundreds of foreign genes to the species from permanently aquatic habitats. Foreign genes were mainly enzymes with various annotated functions that include catabolism of complex polysaccharides and stress responses. We found evidence of differential loss of ancestral foreign genes previously associated with desiccation protection in the two non-desiccating species. CONCLUSIONS: Nearly half of foreign genes were acquired before the divergence of bdelloid families over 60 Mya. Nonetheless, HGT is ongoing in bdelloids and has contributed to putative functional differences among species. Variation among our study species is consistent with the hypothesis that desiccating habitats promote HGT.


Asunto(s)
Ecosistema , Transferencia de Gen Horizontal , Rotíferos/genética , Animales , Desecación , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN , Especificidad de la Especie
17.
Proc Biol Sci ; 282(1799): 20142476, 2015 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-25621335

RESUMEN

Comparative analysis is a potentially powerful approach to study the effects of ecological traits on genetic variation and rate of evolution across species. However, the lack of suitable datasets means that comparative studies of correlates of genetic traits across an entire clade have been rare. Here, we use a large DNA-barcode dataset (5062 sequences) of water beetles to test the effects of species ecology and geographical distribution on genetic variation within species and rates of molecular evolution across species. We investigated species traits predicted to influence their genetic characteristics, such as surrogate measures of species population size, latitudinal distribution and habitat types, taking phylogeny into account. Genetic variation of cytochrome oxidase I in water beetles was positively correlated with occupancy (numbers of sites of species presence) and negatively with latitude, whereas substitution rates across species depended mainly on habitat types, and running water specialists had the highest rate. These results are consistent with theoretical predictions from nearly-neutral theories of evolution, and suggest that the comparative analysis using large databases can give insights into correlates of genetic variation and molecular evolution.


Asunto(s)
Escarabajos/genética , Evolución Molecular , Modelos Genéticos , Animales , ADN Mitocondrial/química , Variación Genética , Análisis Multivariante , Filogenia , Densidad de Población , Dinámica Poblacional , Análisis de Secuencia de ADN
18.
Proc Biol Sci ; 282(1815)2015 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-26378213

RESUMEN

Species interactions can play a major role in shaping evolution in new environments. In theory, species interactions can either stimulate evolution by promoting coevolution or inhibit evolution by constraining ecological opportunity. The relative strength of these effects should vary as species richness increases, and yet there has been little evidence for evolution of component species in communities. We evolved bacterial microcosms containing between 1 and 12 species in three different environments. Growth rates and yields of isolates that evolved in communities were lower than those that evolved in monocultures, consistent with recent theory that competition constrains species to specialize on narrower sets of resources. This effect saturated or reversed at higher levels of richness, consistent with theory that directional effects of species interactions should weaken in more diverse communities. Species varied considerably, however, in their responses to both environment and richness levels. Mechanistic models and experiments are now needed to understand and predict joint evolutionary dynamics of species in diverse communities.


Asunto(s)
Bacterias/crecimiento & desarrollo , Biodiversidad , Evolución Biológica , Interacciones Microbianas , Bacterias/genética , Fenómenos Ecológicos y Ambientales , Dinámica Poblacional , Selección Genética
19.
New Phytol ; 207(2): 291-296, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25598318

RESUMEN

Species are normally considered to be the fundamental unit for understanding the evolution of biodiversity. Yet, in a survey of botanists in 1940, twice as many felt that plant genera were more natural units than plant species. Revisiting the survey, we found more people now regarded species as a more evolutionarily real unit, but a sizeable number still felt that genera were more evolutionarily real than species. Definitions of 'evolutionarily real' split into those based on shared evolutionary history and those based on shared evolutionary fate via ongoing evolutionary processes. We discuss recent work testing for shared evolutionary fate at the species and higher levels and present preliminary evidence for evolutionarily significant higher taxa in plants.


Asunto(s)
Biodiversidad , Evolución Biológica , Filogenia , Plantas/genética , Humanos , Especificidad de la Especie , Encuestas y Cuestionarios
20.
PLoS Biol ; 10(5): e1001330, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22615541

RESUMEN

Studies of evolutionary responses to novel environments typically consider single species or perhaps pairs of interacting species. However, all organisms co-occur with many other species, resulting in evolutionary dynamics that might not match those predicted using single species approaches. Recent theories predict that species interactions in diverse systems can influence how component species evolve in response to environmental change. In turn, evolution might have consequences for ecosystem functioning. We used experimental communities of five bacterial species to show that species interactions have a major impact on adaptation to a novel environment in the laboratory. Species in communities diverged in their use of resources compared with the same species in monocultures and evolved to use waste products generated by other species. This generally led to a trade-off between adaptation to the abiotic and biotic components of the environment, such that species evolving in communities had lower growth rates when assayed in the absence of other species. Based on growth assays and on nuclear magnetic resonance (NMR) spectroscopy of resource use, all species evolved more in communities than they did in monocultures. The evolutionary changes had significant repercussions for the functioning of these experimental ecosystems: communities reassembled from isolates that had evolved in polyculture were more productive than those reassembled from isolates that had evolved in monoculture. Our results show that the way in which species adapt to new environments depends critically on the biotic environment of co-occurring species. Moreover, predicting how functioning of complex ecosystems will respond to an environmental change requires knowing how species interactions will evolve.


Asunto(s)
Adaptación Fisiológica , Bacterias/crecimiento & desarrollo , Evolución Biológica , Ambiente , Interacciones Microbianas , Bacterias/aislamiento & purificación , Fenómenos Fisiológicos Bacterianos , Técnicas Bacteriológicas , Biota , Técnicas de Cultivo , Espectroscopía de Resonancia Magnética , Método de Montecarlo , Análisis de Componente Principal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA