Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nanotechnology ; 35(18)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38176071

RESUMEN

Microfabrication procedure of piezoelectric micro electro-mechanical systems based on 5µm thick LiNbO3films on SiO2/Si substrate at wafer scale including deep dry etching of thick LiNbO3films by implementing pulsed mode of Ar/SF6gas was developed. In particular, two (YXlt)/128°/90°LiNbO3-Si cantilevers with tip mass were fabricated and characterized in terms of resonance frequency (511 and 817 Hz), actuation and acceleration sensing capabilities. The quality factor of 89.5 and the electromechanical coupling of 4.8% were estimated from measured frequency dependency of electrical impedance, fitted by using Butterworth-Van Dyke model. The fabricated piezoelectric micro-electro-mechanical systems have demonstrated highly linear displacement with good sensitivity (5.28 ± 0.02µm V-1) as a function of applied voltage and high sensitivity to vibrations of 667 mV g-1indicating a suitability of the structure for actuation purposes and for acceleration or frequency sensing with high precision, respectively.

2.
Nanotechnology ; 35(17)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38181437

RESUMEN

Development of bulk acoustic wave filters with ultra-wide pass bands and operating at high frequencies for 5thand 6thgeneration telecommunication applications and micro-scale actuators, energy harvesters and sensors requires lead-free piezoelectric thin films with high electromechanical coupling and compatible with Si technology. In this paper, the epitaxial growth of 36°Y-X and 30°X-Y LiNbO3films by direct liquid injection chemical vapour deposition on Si substrates by using epitaxial SrTiO3layers, grown by molecular beam epitaxy, has been demonstrated. The stability of the interfaces and chemical interactions between SrTiO3, LiNbO3and Si were studied experimentally and by thermodynamical calculations. The experimental conditions for pure 36°Y-X orientation growth have been optimized. The piezoelectricity of epitaxial 36°Y-X LiNbO3/SrTiO3/Si films was confirmed by means of piezoelectric force microscopy measurements and the ferroelectric domain inversion was attained at 85 kV.cm-1as expected for the nearly stoichiometric LiNbO3. According to the theoretical calculations, 36°Y-X LiNbO3films on Si could offer an electromechanical coupling of 24.4% for thickness extension excitation of bulk acoustic waves and a comparable figure of merit of actuators and vibrational energy harvesters to that of standard PbZr1-xTixO3films.

3.
Sensors (Basel) ; 24(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38732922

RESUMEN

Vibration energy harvesting based on piezoelectric transducers is an attractive choice to replace single-use batteries in powering Wireless Sensor Nodes (WSNs). As of today, their widespread application is hindered due to low operational bandwidth and the conventional use of lead-based materials. The Restriction of Hazardous Substances legislation (RoHS) implemented in the European Union restricts the use of lead-based piezoelectric materials in future electronic devices. This paper investigates lithium niobate (LiNbO3) as a lead-free material for a high-performance broadband Piezoelectric Energy Harvester (PEH). A single-clamped, cantilever beam-based piezoelectric microgenerator with a mechanical footprint of 1 cm2, working at a low resonant frequency of 200 Hz, with a high piezoelectric coupling coefficient and broad bandwidth, was designed and microfabricated, and its performance was evaluated. The PEH device, with an acceleration of 1 g delivers a maximum output RMS power of nearly 35 µW/cm2 and a peak voltage of 6 V for an optimal load resistance at resonance. Thanks to a high squared piezoelectric electro-mechanical coupling coefficient (k2), the device offers a broadband operating frequency range above 10% of the central frequency. The Mason electro-mechanical equivalent circuit was derived, and a SPICE model of the device was compared with experimental results. Finally, the output voltage of the harvester was rectified to provide a DC output stored on a capacitor, and it was regulated and used to power an IoT node at an acceleration of as low as 0.5 g.

4.
Nanotechnology ; 34(32)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37100048

RESUMEN

Surface acoustic wave delay lines with an operational frequency of 2.5 GHz have been designed to measure the acousto-electric transport of carriers in graphene transferred onto YX128°-LiNbO3piezoelectric substrate. The monolayer of graphene on LiNbO3presented sheet resistance in the range of 733-1230 Ω/□ and ohmic contact resistance with gold of 1880 to 5200 Ωµm. The measurements with different interaction lengths on graphene bars have allowed the extraction of carrier absorption and mobility parameters from acousto-electric current. Graphene presented higher acousto-electronic interaction in the GHz range than previously reported values in the range of 100s MHz with carrier absorption losses of 109 m-1and mobility for acoustically generated charges of 101 cm2V-1s-1.

5.
Sensors (Basel) ; 22(2)2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35062520

RESUMEN

In this paper, we present integrated lead-free energy converters based on a suitable MEMS fabrication process with an embedded layer of LiNbO3. The fabrication technology has been developed to realize micromachined self-generating transducers to convert kinetic energy into electrical energy. The process proposed presents several interesting features with the possibility of realizing smaller scale devices, integrated systems, miniaturized mechanical and electromechanical sensors, and transducers with an active layer used as the main conversion element. When the system is fabricated in the typical cantilever configuration, it can produce a peak-to-peak open-circuit output voltage of 0.208 V, due to flexural deformation, and a power density of 1.9 nW·mm-3·g-2 at resonance, with values of acceleration and frequency of 2.4 g and 4096 Hz, respectively. The electromechanical transduction capability is exploited for sensing and power generation/energy harvesting applications. Theoretical considerations, simulations, numerical analyses, and experiments are presented to show the proposed LiNbO3-based MEMS fabrication process suitability. This paper presents substantial contributions to the state-of-the-art, proposing an integral solution regarding the design, modelling, simulation, realization, and characterization of a novel transducer.

6.
Sensors (Basel) ; 21(22)2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34833578

RESUMEN

Wireless sensor nodes (WSNs) are the fundamental part of an Internet of Things (IoT) system for detecting and transmitting data to a master node for processing. Several research studies reveal that one of the disadvantages of conventional, battery-powered WSNs, however, is that they typically require periodic maintenance. This paper aims to contribute to existing research studies on this issue by exploring a new energy-autonomous and battery-free WSN concept for monitor vibrations. The node is self-powered from the conversion of ambient mechanical vibration energy into electrical energy through a piezoelectric transducer implemented with lead-free lithium niobate piezoelectric material to also explore solutions that go towards a greener and more sustainable IoT. Instead of implementing any particular sensors, the vibration measurement system exploits the proportionality between the mechanical power generated by a piezoelectric transducer and the time taken to store it as electrical energy in a capacitor. This helps reduce the component count with respect to conventional WSNs, as well as energy consumption and production costs, while optimizing the overall node size and weight. The readout is therefore a function of the time it takes for the energy storage capacitor to charge between two constant voltage levels. The result of this work is a system that includes a specially designed lead-free piezoelectric vibrational transducer and a battery-less sensor platform with Bluetooth low energy (BLE) connectivity. The system can harvest energy in the acceleration range [0.5 g-1.2 g] and measure vibrations with a limit of detection (LoD) of 0.6 g.

7.
Nanomaterials (Basel) ; 14(4)2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38392718

RESUMEN

Lithium niobate is a lead-free material which has attracted considerable attention due to its excellent optical, piezoelectric, and ferroelectric properties. This research is devoted to the synthesis through an innovative sol-gel/spin-coating approach of polycrystalline LiNbO3 films on Si substrates. A novel single-source hetero-bimetallic precursor containing lithium and niobium was synthesized and applied to the sol-gel synthesis. The structural, compositional, and thermal characteristics of the precursor have been tested through attenuated total reflection, X-ray photoelectron spectroscopy, thermogravimetric analysis, and differential scanning calorimetry. The LiNbO3 films have been characterized from a structural point of view with combined X-ray diffraction and Raman spectroscopy. Field-emission scanning electron microscopy, energy dispersive X-ray analysis, and X-ray photoelectron spectroscopy have been used to study the morphological and compositional properties of the deposited films.

8.
iScience ; 24(7): 102749, 2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34258567

RESUMEN

This paper addresses the design optimization process of an energy harvesting device for scavenging energy from an e-gadget, utilizing its "rocking" motion. The plucking mechanism inspired by the frequency up-conversion technique provides initial displacement exciting piezoelectric beams and increases the total number of excitations multiple times. The harvester is designed in conjunction with the multidimensional surrogate optimization algorithm to maximize the device's performance considering the geometrical features of the concept and the constrained operating environment. The established numerical model is validated first using a set of experimental data. The obtained numerical results demonstrate that the developed 10.2″ size device produces 55 mJ in half-period when inclined at 45°, which is equivalent to generating 0.3 W. Considering that an iPad of the same size consumes around 3 W, the proposed energy harvester is capable of extending its battery life by 10%.

9.
Dalton Trans ; 49(4): 1002-1006, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31932829

RESUMEN

Novel adducts of lithium hexafluoroacetylacetonato {Li(hfa)} with polyethers (monoglyme = {CH3OCH2CH2OCH3}, diglyme = {CH3O(CH2CH2O)2CH3}, triglyme = {CH3O(CH2CH2O)3CH3} and tetraglyme {CH3O(CH2CH2O)4CH3} have been synthesized through a single step reaction and characterized by FT-IR spectroscopy, 1H, and 13C NMR, single crystal X-ray diffraction studies along with thermal analysis.

10.
Polymers (Basel) ; 11(6)2019 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-31226755

RESUMEN

This study was dedicated to the investigation of poly(vinylidene fluoride) (PVDF) micropillar arrays obtained by soft lithography followed by phase inversion at a low temperature. Reduced graphene oxide (rGO) was incorporated into the PVDF as a nucleating filler. The piezoelectric properties of the PVDF-rGO composite micropillars were explored via piezo-response force microscopy (PFM). Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) showed that α, ß, and γ phases co-existed in all studied samples, with a predominance of the γ phase. The piezoresponse force microscopy (PFM) data provided the local piezoelectric response of the PVDF micropillars, which exhibited a temperature-induced downward dipole orientation in the pristine PVDF micropillars. The addition of rGO into the PVDF matrix resulted in a change in the preferred polarization direction, and the piezo-response phase angle changed from -120° to 20°-40°. The pristine PVDF and PVDF loaded with 0.1 wt % of rGO after low-temperature quenching were found to possess a piezoelectric response of 86 and 87 pm/V respectively, which are significantly higher than the |d33eff| in the case of imprinted PVDF 64 pm/V. Thus, the addition of rGO significantly affected the domain orientation (polarization) while quenching increased the piezoelectric response.

11.
Artículo en Inglés | MEDLINE | ID: mdl-18276567

RESUMEN

A systematic study of domain structure and residual stress evolution with film thickness and of phase transition in c/a epitaxial PbTiO(3)/LaAlO(3) films using X-ray diffraction and Raman spectroscopy is reported. Both techniques revealed that the films are under tensile residual stress in the film plane and that a-domains are more stressed than c-domains. The two components of the large A(1)(TO) Ramanmodes are associated with a- and c-domains and their intensity ratio correlates to the volume fraction of a-domains. The evolution of the Raman signature with temperature revealed that the spectrum of a-domains disappears around 480 degrees C, whereas c-domains present an anomaly in their spectrum at 500 degrees C but maintain a well-defined Raman signature up to 600 degrees C.


Asunto(s)
Plomo/química , Membranas Artificiales , Modelos Químicos , Modelos Moleculares , Espectrometría Raman , Titanio/química , Difracción de Rayos X , Simulación por Computador , Elasticidad , Ensayo de Materiales , Conformación Molecular , Estrés Mecánico
12.
Artículo en Inglés | MEDLINE | ID: mdl-27076407

RESUMEN

Recent studies have evidenced that Pt/AlN/Sapphire surface acoustic wave (SAW) devices are promising for high-temperature high-frequency applications. However, they cannot be used above 700°C in air atmosphere as the Pt interdigital transducers (IDTs) agglomerate and the AlN layer oxidizes in such conditions. In this paper, we explore the possibility to use an AlN protective overlayer to concurrently hinder these phenomena. To do so, AlN/IDT/AlN/Sapphire heterostructures undergo successive annealing steps from 800°C to 1000°C in air atmosphere. The impact of each step on the morphology, microstructure, and phase composition of AlN and Pt films is evaluated using optical microscopy, scanning and transmission electron microscopy (SEM and TEM), X-ray diffraction (XRD), and secondary ion mass spectroscopy (SIMS). Finally, acoustical performance at room temperature of both protected and unprotected SAW devices are compared, as well as the effects of annealing on these performance. These investigations show that the use of an overlayer is one possible solution to strongly hinder the Pt IDTs agglomeration up to 1000°C. Moreover, AlN/IDT/AlN/Sapphire SAW heterostructures show promising performances in terms of stability up to 800°C. At higher temperatures, the oxidation of AlN is more intense and makes it inappropriate to be used as a protective layer.

13.
J Phys Condens Matter ; 25(20): 205901, 2013 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-23628842

RESUMEN

Phase composition of epitaxial/textured LiNbO3 films on sapphire substrates, grown by pulsed laser deposition, atmospheric pressure metal organic chemical vapor deposition and pulsed injection metal organic chemical vapor deposition was studied by conventional x-ray diffraction techniques. Raman spectroscopy, being highly sensitive to the symmetry of materials, was used as a countercheck in the compositional analysis. The wavenumbers of Raman modes of LiNb3O8 and Li3NbO4 phases were identified from Raman spectra of synthesized powders. Asymmetry of profiles of x-ray diffraction reflections of LiNbO3 films was studied. This asymmetry may have different origins which consequently may result in misleading conclusions about phase composition of textured LiNbO3 films.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA