Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Legal Med ; 138(2): 509-518, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37491634

RESUMEN

Knowledge of the decomposition of vertebrate animals has advanced considerably in recent years and revealed complex interactions among biological and environmental factors that affect rates of decay. Yet this complexity remains to be fully incorporated into research or models of the postmortem interval (PMI). We suggest there is both opportunity and a need to use recent advances in decomposition theory to guide forensic research and its applications to understanding the PMI. Here we synthesise knowledge of the biological and environmental factors driving variation in decomposition and the acknowledged limitations among current models of the PMI. To guide improvement in this area, we introduce a conceptual framework that highlights the multiple interdependencies affecting decay rates throughout the decomposition process. Our framework reinforces the need for a multidisciplinary approach to PMI research, and calls for an adaptive research cycle that aims to reduce uncertainty in PMI estimates via experimentation, modelling, and validation.


Asunto(s)
Cambios Post Mortem , Proyectos de Investigación , Animales , Autopsia , Patologia Forense
2.
Int J Legal Med ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38622312

RESUMEN

The decomposition of animal remains is a multifaceted process, involving ecological, biological, and chemical interactions. While the complexity is acknowledged through concepts like the necrobiome, it's unclear if this complexity is reflected in research. Appreciation of the complexity of decomposition is crucial for identifying sources of variation in estimations of time since death in medico-legal science, as well as building broader ecological knowledge of the decomposition process. To gain insights into the extent of multidisciplinary research in the field of decomposition science, we conducted an examination of peer-reviewed literature on four key drivers of variation: volatile organic compounds, microbes, drugs/toxins, and insects. Among 650 articles, we identified their scientific discipline, driver/s of variation investigated, and year of publication. We found that 19% explored relationships between two drivers, while only 4% investigated interactions between three. None considered all four drivers. Over the past three decades, there has been a steady increase in decomposition research publications, signifying its growing importance. Most research (79%) was linked to forensic science, highlighting opportunities for interdisciplinary collaboration in decomposition science. Overall, our review underscores the need to incorporate multidisciplinary approaches and theory into contemporary decomposition research.

3.
Ecol Lett ; 25(9): 2009-2021, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35904819

RESUMEN

Concerning declines in insect populations have been reported from Europe and the United States, yet there are gaps in our knowledge of the drivers of insect trends and their distribution across the world. We report on our analysis of a spatially extensive, 14-year study of ground-dwelling beetles in four natural forest biomes spanning Japan's entire latitudinal range (3000 km). Beetle species richness, abundance and biomass declined in evergreen coniferous forests but increased in broadleaf-coniferous mixed forests. Further, beetles in evergreen coniferous forests responded negatively to increased temperature and precipitation anomalies, which have both risen over the study's timespan. These significant changes parallel reports of climate-driven changes in forest tree species, providing further evidence that climate change is altering forest ecosystems fundamentally. Given the enormous biodiversity and ecosystem services that forests support globally, the implications for biodiversity change resulting from climate change could be profound.


Asunto(s)
Escarabajos , Tracheophyta , Animales , Biodiversidad , Cambio Climático , Ecosistema , Bosques , Japón , Árboles
4.
Oecologia ; 198(4): 1043-1056, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35294646

RESUMEN

Resource quality is a key driver of species abundance and community structure. Carrion is unique among resources due to its high nutritional quality, rapidly changing nature, and the diverse community of organisms it supports. Yet the role resource quality plays in driving variation in abundance patterns of carrion-associated species remains poorly studied. Here we investigate how species abundances change with a measure of resource change, and interpret these findings to determine how species differ in their association with carrion that changes in quality over time. We conducted field succession experiments using pigs and humans over two winters and one summer. We quantified the effect of total body score, an objective measure of resource change, on adult insect abundance using generalised additive models. For each species, phases of increasing abundance likely indicated attraction to a high-quality resource, and length of abundance maxima indicated optimal oviposition and feeding time. Some species such as the beetle Necrobia rufipes had a rapid spike in abundance, suggesting a narrow window of opportunity for carrion resource exploitation, while species like the wasp Nasonia vitripennis had a gradual change in abundance, indicating a wide window of resource exploitation. Different abundance patterns were also observed between species occurring on pigs and humans, suggesting cadaver type is an important aspect of resource quality. Our findings show that species abundances, unlike species occurrences, can reveal additional detail about species exploitation of carrion and provide information about how resource quality may drive competition and variation in insect community succession.


Asunto(s)
Escarabajos , Insectos , Animales , Cadáver , Femenino , Estaciones del Año , Porcinos , Vertebrados
5.
Oecologia ; 199(1): 181-191, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35501402

RESUMEN

Highly competitive ephemeral resources like carrion tend to support much greater diversity relative to longer-lived resources. The coexistence of diverse communities on short-lived carrion is a delicate balance, maintained by several processes including competition. Despite this balance, few studies have investigated the effect of competition on carrion, limiting our understanding of how competition drives coexistence. We investigated how priority effects and larval density influence coexistence between two blowfly species, the facultative predator Chrysomya rufifacies and its competitor Calliphora stygia, which occupy broadly similar niches but differ in their ecological strategies for exploiting carrion. We examined how adult oviposition, larval survival, developmental duration, and adult fitness were affected by the presence of differently aged heterospecific larval masses, and how these measures varied under three larval densities. We found C. rufifacies larval survival was lowest in conspecific masses with low larval densities. In heterospecific masses, survival increased, particularly at high larval density, with priority effects having minimal effect, suggesting a dependency on collective exodigestion. For C. stygia, we found survival to be constant across larval densities in a conspecific mass. In heterospecific masses, survival decreased drastically when C. rufifacies arrived first, regardless of larval density, suggesting C. stygia is temporally constrained to avoid competition with C. rufifacies. Neither species appeared to completely outcompete the other, as they were either constrained by density requirements (C. rufifacies) or priority effects (C. stygia). Our results provide new mechanistic insights into the ecological processes allowing for coexistence on a competitively intense, ephemeral resource such as carrion.


Asunto(s)
Calliphoridae , Dípteros , Animales , Femenino , Larva , Oviposición
6.
Forensic Sci Med Pathol ; 18(3): 343-351, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35543928

RESUMEN

Providing accurate and reliable measures of decomposition is paramount for forensic research where decomposition progress is used to estimate time of death. Mass loss is routinely used as a direct measure of biomass decomposition in ecological studies, yet few studies have analysed mass loss in a forensic context on human cadavers to determine its usefulness for modelling the decomposition process. Mass loss was examined in decomposing human and pig cadavers, and compared with other common decomposition metrics, such as total body score (TBS). One summer and one winter field decomposition experiment was conducted using human and pig cadavers, as pigs are often used as proxies for human cadavers in forensic research. The two measures of decomposition revealed two contrasting patterns of decomposition on pigs and humans, particularly in winter where TBS stabilised at similar values, but mass loss differed greatly. Mass loss was found to be faster in pigs than humans during early decomposition. Pigs lost 75% of their mass in winter, while humans lost less than 50%; however, in summer, both lost around 80% of their mass. TBS displayed similar patterns in both experiments, with TBS increasing more rapidly in pigs compared with humans but both eventually reaching similar TBS values in late decomposition. Measuring mass loss can provide additional information about decomposition progress that is missed if using TBS only. Key differences in decomposition progress between cadaver types were also observed, suggesting caution when extrapolating data from pigs to humans for forensic research and decomposition modelling.


Asunto(s)
Cambios Post Mortem , Humanos , Porcinos , Animales , Patologia Forense , Modelos Animales , Cadáver , Estaciones del Año
7.
Forensic Sci Med Pathol ; 16(4): 605-612, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32876891

RESUMEN

The decomposition of vertebrate cadavers on the soil surface produces nutrient-rich fluids that enter the soil profile, leaving clear evidence of the presence of a cadaver decomposition island. Few studies, however, have described soil physicochemistry under human cadavers, or compared the soil between human and non-human animal models. In this study, we sampled soil to 5 cm depth at distances of 0 cm and 30 cm from cadavers, as well as from control sites 90 cm distant, from five human and three pig cadavers at the Australian Facility for Taphonomic Experimental Research (AFTER). We found that soil moisture, electrical conductivity, nitrate, ammonium, and total phosphorus were higher in soil directly under cadavers (0 cm), with very limited lateral spread beyond 30 cm. These patterns lasted up to 700 days, indicating that key soil nutrients might be useful markers of the location of the decomposition island for up to 2 years. Soil phosphorus was always higher under pigs than humans, suggesting a possible difference in the decomposition and soil processes under these two cadaver types. Our preliminary study highlights the need for further experimental and replicated research to quantify variability in soil properties, and to identify when non-human animals are suitable analogues.


Asunto(s)
Cadáver , Cambios Post Mortem , Suelo/química , Compuestos de Amonio/análisis , Animales , Conductividad Eléctrica , Biomarcadores Ambientales , Ciencias Forenses , Humanos , Modelos Animales , Nitratos/análisis , Nitrógeno/análisis , Fósforo/análisis , Porcinos , Agua/análisis
8.
Proc Biol Sci ; 286(1901): 20190114, 2019 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-30991926

RESUMEN

Restoring native vegetation in agricultural landscapes can reverse biodiversity declines via species gains. Depending on whether the traits of colonizers are complementary or redundant to the assemblage, species gains can increase the efficiency or stability of ecological functions, yet detecting these processes is not straightforward. We propose a new conceptual model to identify potential changes to complementarity and redundancy in response to landscape change via relative changes in taxonomic and functional richness. We applied our model to a 14-year study of birds across an extensive agricultural region. We found compelling evidence that high levels of landscape-scale tree cover and patch-scale restoration were significant determinants of functional change in the overall bird assemblage. This was true for every one of the six traits investigated individually, indicating increased trait-specific functional complementarity and redundancy in the assemblage. Applying our conceptual model to species diversity data provided new insights into how the return of vertebrates to restored landscapes may affect ecological function.


Asunto(s)
Agricultura , Biodiversidad , Aves , Ecosistema , Animales , Bosques , Modelos Biológicos , Nueva Gales del Sur , Dinámica Poblacional
9.
J Environ Manage ; 230: 94-101, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30273788

RESUMEN

Decision triggers are defined thresholds in the status of monitored variables that indicate when to undertake management, and avoid undesirable ecosystem change. Decision triggers are frequently recommended to conservation practitioners as a tool to facilitate evidence-based management practices, but there has been limited attention paid to how practitioners are integrating decision triggers into existing monitoring programs. We sought to understand whether conservation practitioners' use of decision triggers was influenced by the type of variables in their monitoring programs. We investigated this question using a practitioner-focused workshop involving a structured discussion and review of eight monitoring programs. Among our case studies, direct measures of biodiversity (e.g. native species) were more commonly monitored, but less likely to be linked to decision triggers (10% with triggers) than measures being used as surrogates (54% with triggers) for program objectives. This was because decision triggers were associated with management of threatening processes, which were often monitored as a surrogate for a biodiversity asset of interest. By contrast, direct measures of biodiversity were more commonly associated with informal decision processes that led to activities such as management reviews or external consultation. Workshop participants were in favor of including more formalized decision triggers in their programs, but were limited by incomplete ecological knowledge, lack of appropriately skilled staff, funding constraints, and/or uncertainty regarding intervention effectiveness. We recommend that practitioners consider including decision triggers for discussion activities (such as external consultation) in their programs as more than just early warning points for future interventions, particularly for direct measures. Decision triggers for discussions should be recognized as a critical feature of monitoring programs where information and operational limitations inhibit the use of decision triggers for interventions.


Asunto(s)
Biodiversidad , Toma de Decisiones , Monitoreo del Ambiente , Humanos , Incertidumbre
10.
Oecologia ; 188(3): 645-657, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29872917

RESUMEN

Land-use change due to agriculture has a major influence on arthropod biodiversity, and may influence species differently depending on their traits. It is unclear how species traits vary across different land uses and their edges, with most studies focussing on single habitat types and overlooking edge effects. We examined variation in morphological traits of carabid beetles (Coleoptera:Carabidae) on both sides of edges between woodlands and four adjoining, but contrasting farmland uses in an agricultural landscape. We asked: (1) how do traits differ between woodlands and different adjoining farmland uses (crop, fallow, restoration planting, and woody debris applied over crop), and do effects depend on increasing distances from the farmland-woodland edge? (2) Does vegetation structure explain observed effects of adjoining farmland use and edge effects on these traits? We found that carabid communities varied in body size and shape, including traits associated with diet, robustness, and visual ability. Smaller sized species were associated with woodlands and larger sized species with farmlands. Farmland use further influenced these associations, where woodlands adjoining plantings supported smaller species, while fallows and crops supported larger species. Vegetation structure significantly influenced body size, flying ability, and body shape, and helped explain the effects of farmland use and distance from edges on body size. We highlight the important role of vegetation structure, farmland use, and edge effects in filtering the morphological traits of carabid assemblages across a highly modified agricultural landscape. Our findings suggest that farmland management can influence body size and dispersal-related traits in farmland and adjacent native vegetation.


Asunto(s)
Escarabajos , Animales , Biodiversidad , Ecosistema , Granjas , Bosques
11.
Conserv Biol ; 31(2): 446-458, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27314208

RESUMEN

Livestock grazing is the most widespread land use on Earth and can have negative effects on biodiversity. Yet, many of the mechanisms by which grazing leads to changes in biodiversity remain unresolved. One reason is that conventional grazing studies often target broad treatments rather than specific parameters of grazing (e.g., intensity, duration, and frequency) or fail to account for historical grazing effects. We conducted a landscape-scale replicated grazing experiment (15,000 km2 , 97 sites) to examine the impact of past grazing management and current grazing regimes (intensity, duration, and frequency) on a community of ground-dwelling herpetofauna (39 species). We analyzed community variables (species richness and composition) for all species and built multiseason patch-occupancy models to predict local colonization and extinction for the 7 most abundant species. Past grazing practices did not influence community richness but did affect community composition and patch colonization and extinction for 4 of 7 species. Present grazing parameters did not influence community richness or composition, but 6 of the 7 target species were affected by at least one grazing parameter. Grazing frequency had the most consistent influence, positively affecting 3 of 7 species (increased colonization or decreased extinction). Past grazing practice affected community composition and population dynamics in some species in different ways, which suggests that conservation planners should examine the different grazing histories of an area. Species responded differently to specific current grazing practices; thus, incentive programs that apply a diversity of approaches rather than focusing on a change such as reduced grazing intensity should be considered. Based on our findings, we suggest that determining fine-scale grazing attributes is essential for advancing grazing as a conservation strategy.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Herbivoria , Ganado , Reptiles , Animales , Dinámica Poblacional
12.
Glob Chang Biol ; 22(4): 1325-35, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26554638

RESUMEN

Managing multiple, interacting disturbances is a key challenge to biodiversity conservation, and one that will only increase as global change drivers continue to alter disturbance regimes. Theoretical studies have highlighted the importance of a mechanistic understanding of stressor interactions for improving the prediction and management of interactive effects. However, many conservation studies are not designed or interpreted in the context of theory and instead focus on case-specific management questions. This is a problem as it means that few studies test the relationships highlighted in theoretical models as being important for ecological management. We explore the extent of this problem among studies of interacting disturbances by reviewing recent experimental studies of the interaction between fire and grazing in terrestrial ecosystems. Interactions between fire and grazing can occur via a number of pathways; one disturbance can modify the other's likelihood, intensity or spatial distribution, or one disturbance can alter the other's impacts on individual organisms. The strength of such interactions will vary depending on disturbance attributes (e.g. size or intensity), and this variation is likely to be nonlinear. We show that few experiments testing fire-grazing interactions are able to identify the mechanistic pathway driving an observed interaction, and most are unable to detect nonlinear effects. We demonstrate how these limitations compromise the ability of experimental studies to effectively inform ecological management. We propose a series of adjustments to the design of disturbance interaction experiments that would enable tests of key theoretical pathways and provide the deeper ecological understanding necessary for effective management. Such considerations are relevant to studies of a broad range of ecological interactions and are critical to informing the management of disturbance regimes in the context of accelerating global change.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Modelos Teóricos , Incendios , Herbivoria
13.
Ecol Appl ; 26(2): 557-73, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27209795

RESUMEN

Fire is a major ecological process in many ecosystems worldwide. We sought to identify which attributes of fire regimes affect temporal change in the presence and abundance of Australian native mammals. Our detailed study was underpinned by time series data on 11 mammal species at 97 long-term sites in southeastern Australia between 2003 and 2013. We explored how temporal aspects of fire regimes influenced the presence and conditional abundance of species. The key fire regime components examined were: (1) severity of a major fire in 2003, (2) interval between the last major fire (2003) and the fire prior to that, and (3) number of past fires. Our long-term data set enabled quantification of the interactions between survey year and each fire regime variable: an ecological relationship missing from temporally restricted studies. We found no evidence of any appreciable departures from the assumption of independence of the sites. Multiple aspects of fire regimes influenced temporal variation in the presence and abundance of mammals. The best models indicated that six of the 11 species responded to two or more fire regime variables, with two species influenced by all three fire regime attributes. Almost all species responded to time since fire, either as an interaction with survey year or as a main effect. Fire severity or its interaction with survey year was important for most terrestrial rodents. The number of fires at a site was significant for terrestrial rodents and several other species. Our findings contain evidence of the effects on native mammals of heterogeneity in fire regimes. Temporal response patterns of mammal species were influenced by multiple fire regime attributes, often in conjunction with survey year. This underscores the critical importance of long-term studies of biota that are coupled with data sets characterized by carefully documented fire history, severity, and frequency. Long-term studies are essential to predict animal responses to fires and guide management of when and where (prescribed) fire or, conversely, long-unburned vegetation is needed. The complexity of observed responses highlights the need for large reserves in which patterns of heterogeneity in fire regimes can be sustained in space and over time.


Asunto(s)
Conducta Animal , Ecosistema , Incendios , Mamíferos , Animales , Australia , Factores de Tiempo
14.
Ecol Appl ; 26(7): 2267-2279, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27755726

RESUMEN

Fire is a major ecological process in ecosystems globally. Its impacts on fauna can be both direct (e.g., mortality) and indirect (e.g., altered habitat), resulting in population recovery being driven by several possible mechanisms. Separating direct from indirect impacts of fire on faunal population recovery can be valuable in guiding management of biodiversity in fire-prone environments. However, resolving the influence of direct and indirect processes remains a key challenge because many processes affecting fauna can change concomitantly with time since fire. We explore the mechanisms influencing bird response to fire by posing the question, can temporal changes in vegetation structure predict changes in bird occurrence on sites, and can these be separated from other temporal changes using the surrogate of time since fire? We conducted a 12-yr study of bird and vegetation responses to fire at 124 sites across six vegetation classes in Booderee National Park, Australia. Approximately half of these sites, established in 2002, were burned by a large (>3000 ha) wildfire in 2003. To disentangle collinear effects of temporal changes in vegetation and direct demographic effects on population recovery that are subsumed by time since fire, we incorporated both longitudinal and cross-sectional vegetation effects in addition to time since fire within logistic structural equation models. We identified temporal changes in vegetation structure and richness of plant and bird species that characterized burned and unburned sites in all vegetation classes. For nine bird species, a significant component of the year trend was driven by temporal trends in one of three vegetation variables (number of understory or midstory plant species, or midstory cover). By contrast, we could not separate temporal effects between time since fire and vegetation attributes for bird species richness, reporting rate, and the occurrence of 11 other bird species. Our findings help identify species for which indirect effects of vegetation dominate recovery and thus may benefit from vegetation management where conservation actions are required and, conversely, those species for which direct effects of time since fire drive recovery, where simply leaving a system to recover following the last disturbance will be sufficient.


Asunto(s)
Biodiversidad , Aves/fisiología , Incendios , Plantas/clasificación , Animales , Australia , Conservación de los Recursos Naturales/métodos , Estudios Transversales , Monitoreo del Ambiente , Dinámica Poblacional , Factores de Tiempo
15.
Conserv Biol ; 29(6): 1606-14, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26271213

RESUMEN

Keeping track of conceptual and methodological developments is a critical skill for research scientists, but this task is increasingly difficult due to the high rate of academic publication. As a crisis discipline, conservation science is particularly in need of tools that facilitate rapid yet insightful synthesis. We show how a common text-mining method (latent Dirichlet allocation, or topic modeling) and statistical tests familiar to ecologists (cluster analysis, regression, and network analysis) can be used to investigate trends and identify potential research gaps in the scientific literature. We tested these methods on the literature on ecological surrogates and indicators. Analysis of topic popularity within this corpus showed a strong emphasis on monitoring and management of fragmented ecosystems, while analysis of research gaps suggested a greater role for genetic surrogates and indicators. Our results show that automated text analysis methods need to be used with care, but can provide information that is complementary to that given by systematic reviews and meta-analyses, increasing scientists' capacity for research synthesis.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Minería de Datos , Estadística como Asunto , Animales , Ecosistema , Invertebrados/genética , Plantas/genética , Vertebrados/genética
16.
Environ Manage ; 56(4): 791-801, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26099570

RESUMEN

Substantial advances have been made in our understanding of the movement of species, including processes such as dispersal and migration. This knowledge has the potential to improve decisions about biodiversity policy and management, but it can be difficult for decision makers to readily access and integrate the growing body of movement science. This is, in part, due to a lack of synthesis of information that is sufficiently contextualized for a policy audience. Here, we identify key species movement concepts, including mechanisms, types, and moderators of movement, and review their relevance to (1) national biodiversity policies and strategies, (2) reserve planning and management, (3) threatened species protection and recovery, (4) impact and risk assessments, and (5) the prioritization of restoration actions. Based on the review, and considering recent developments in movement ecology, we provide a new framework that draws links between aspects of movement knowledge that are likely the most relevant to each biodiversity policy category. Our framework also shows that there is substantial opportunity for collaboration between researchers and government decision makers in the use of movement science to promote positive biodiversity outcomes.


Asunto(s)
Distribución Animal/fisiología , Conservación de los Recursos Naturales/métodos , Ecología/métodos , Formulación de Políticas , Migración Animal/fisiología , Animales , Biodiversidad , Conservación de los Recursos Naturales/legislación & jurisprudencia , Toma de Decisiones , Regulación Gubernamental , Guías como Asunto , Medición de Riesgo
17.
Ecol Appl ; 24(6): 1275-88, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-29160651

RESUMEN

Scale is a key concept in ecology, but the statistically based quantification of scale effects has often proved difficult. This is exemplified by the challenges of quantifying relationships between biodiversity and vegetation cover at different spatial scales to guide restoration and conservation efforts in agricultural environments. We used data from 2002 to 2010 on 184 sites (viz., site scale) nested within 46 farms (the farm scale), nested within 23 landscapes (the landscape scale). We found cross-sectional relationships with the amount of vegetation cover that were typically positive for woodland birds and negative for open-country birds. However, for some species, relationships differed between spatial scales, suggesting differences in nesting and foraging requirements. There was a 3.5% increase in the amount of native vegetation cover in our study region between 2002 and 2010, and our analyses revealed that some open country species responded negatively to these temporal changes, typically at the farm and/or site scale, but not the landscape scale. Species generally exhibited stronger cross-sectional relationships with the amount of vegetation cover than relationships between changes in occupancy and temporal changes in vegetation cover. This unexpected result can be attributed to differences in habitat use by birds of existing vegetation cover (typically old-growth woodland) vs. plantings and natural regeneration, which are the main contributors to temporal increases in vegetation cover. By taking a multi-scaled empirical approach, we have identified species-specific, scale-dependent responses to vegetation cover. These findings are of considerable practical importance for understanding which species will respond to different scales of protection of existing areas of native vegetation, efforts to increase the amount of native vegetation over time, and both approaches together.


Asunto(s)
Aves/fisiología , Monitoreo del Ambiente/métodos , Bosques , Agricultura , Distribución Animal , Animales , Australia , Conservación de los Recursos Naturales , Estudios Transversales , Modelos Biológicos , Dinámica Poblacional , Factores de Tiempo
18.
Oecologia ; 174(2): 545-57, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24114403

RESUMEN

New insights into community-level responses at the urban fringe, and the mechanisms underlying them, are needed. In our study, we investigated the compositional distinctiveness and variability of a breeding bird community at both sides of established edges between suburban residential areas and woodland reserves in Canberra, Australia. Our goals were to determine if: (1) community-level responses were direct (differed with distance from the edge, independent of vegetation) or indirect (differed in response to edge-related changes in vegetation), and (2) if guild-level responses provided the mechanism underpinning community-level responses. We found that suburbs and reserves supported significantly distinct bird communities. The suburban bird community, characterised by urban-adapted native and exotic species, had a weak direct edge response, with decreasing compositional variability with distance from the edge. In comparison, the reserve bird community, characterised by woodland-dependent species, was related to local tree and shrub cover. This was not an indirect response, however, as tree and shrub cover was not related to edge distance. We found that the relative richness of nesting, foraging and body size guilds also displayed similar edge responses, indicating that they underpinned the observed community-level responses. Our study illustrates how community-level responses provide valuable insights into how communities respond to differences in resources between two contrasting habitats. Further, the effects of the suburban matrix penetrate into reserves for greater distances than previously thought. Suburbs and adjacent reserves, however, provided important habitat resources for many native species and the conservation of these areas should not be discounted from continued management strategies.


Asunto(s)
Aves/clasificación , Aves/fisiología , Ecosistema , Animales , Australia , Árboles
19.
Exp Appl Acarol ; 63(1): 1-13, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24292438

RESUMEN

Carrion is an ephemeral and nutrient-rich resource that attracts a diverse array of arthropods as it decomposes. Carrion-associated mites often disperse between animal carcasses using phoresy, the transport of one species by another. Yet few studies have contrasted the dynamics of mite assemblages with other insect taxa present at carrion. We examined and compared the changes in abundance, species richness and composition of mite and beetle assemblages sampled at kangaroo carcasses in a grassy eucalypt woodland at four different times over a 6-month period. We found that the majority of mites were phoretic, with the mesostigmatid genera Uroseius (Uropodidae), Macrocheles (Macrochelidae) and Parasitus (Parasitidae) the most abundant taxa (excluding astigmatid mites). Abundance and richness patterns of mites and beetles were very different, with mites reaching peak abundance and richness at weeks 6 and 12, and beetles at weeks 1 and 6. Both mites and beetles showed clear successional patterns via changes in species presence and relative abundance. Our study shows that mesostigmatid mite assemblages have a delay in peak abundance and richness relative to beetle assemblages. This suggests that differences in dispersal and reproductive traits of arthropods may contribute to the contrasting diversity dynamics of carrion arthropod communities, and further highlights the role of carrion as a driver of diversity and heterogeneity in ecosystems.


Asunto(s)
Conducta Animal , Escarabajos/fisiología , Ácaros/fisiología , Animales , Biodiversidad , Macropodidae/parasitología , Ácaros/clasificación , Dinámica Poblacional
20.
Environ Entomol ; 53(2): 223-229, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38402461

RESUMEN

The overabundance of large herbivores can have detrimental effects on the local environment due to overgrazing. Culling is a common management practice implemented globally that can effectively control herbivore populations and allow vegetation communities to recover. However, the broader indirect effects of culling large herbivores remain relatively unknown, particularly on insect species such as ground-dwelling beetles that perform key ecosystem processes such as decomposition. Here we undertook a preliminary investigation to determine how culling sika deer on an island in North Japan impacted ground-beetle community dynamics. We conducted pitfall trapping in July and September in 2012 (before culling) and again in 2019 (after culling). We compared beetle abundance and community composition within 4 beetle families (Carabidae, Scarabaeidae, Geotrupidae, and Silphidae), across seasons and culling treatments. We found each family responded differently to deer culling. Scarabaeidae displayed the greatest decline in abundance after culling. Silphidae also had reduced abundance but to a lesser extent compared to Scarabaeidae. Carabidae had both higher and lower abundance after culling, depending on the season. We found beetle community composition differed between culling and season, but seasonal variability was reduced after culling. Overall, the culling of large herbivores resulted in a reduction of ground-dwelling beetle populations, particularly necrophagous species dependent on dung and carrion for survival. Our preliminary research highlights the need for long-term and large-scale experiments to understand the indirect ecological implications of culling programs on ecosystem processes.


Asunto(s)
Escarabajos , Ciervos , Humanos , Animales , Ecosistema , Japón , Heces , Biodiversidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA