Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 170(3): 457-469.e13, 2017 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-28753425

RESUMEN

G protein-coupled receptors (GPCRs) mediate diverse signaling in part through interaction with arrestins, whose binding promotes receptor internalization and signaling through G protein-independent pathways. High-affinity arrestin binding requires receptor phosphorylation, often at the receptor's C-terminal tail. Here, we report an X-ray free electron laser (XFEL) crystal structure of the rhodopsin-arrestin complex, in which the phosphorylated C terminus of rhodopsin forms an extended intermolecular ß sheet with the N-terminal ß strands of arrestin. Phosphorylation was detected at rhodopsin C-terminal tail residues T336 and S338. These two phospho-residues, together with E341, form an extensive network of electrostatic interactions with three positively charged pockets in arrestin in a mode that resembles binding of the phosphorylated vasopressin-2 receptor tail to ß-arrestin-1. Based on these observations, we derived and validated a set of phosphorylation codes that serve as a common mechanism for phosphorylation-dependent recruitment of arrestins by GPCRs.


Asunto(s)
Arrestinas/química , Rodopsina/química , Secuencia de Aminoácidos , Animales , Arrestinas/metabolismo , Cromatografía Liquida , Humanos , Ratones , Modelos Moleculares , Fosforilación , Ratas , Rodopsina/metabolismo , Alineación de Secuencia , Espectrometría de Masas en Tándem , Rayos X
2.
Nature ; 589(7841): 310-314, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33268896

RESUMEN

Photosynthetic reaction centres harvest the energy content of sunlight by transporting electrons across an energy-transducing biological membrane. Here we use time-resolved serial femtosecond crystallography1 using an X-ray free-electron laser2 to observe light-induced structural changes in the photosynthetic reaction centre of Blastochloris viridis on a timescale of picoseconds. Structural perturbations first occur at the special pair of chlorophyll molecules of the photosynthetic reaction centre that are photo-oxidized by light. Electron transfer to the menaquinone acceptor on the opposite side of the membrane induces a movement of this cofactor together with lower amplitude protein rearrangements. These observations reveal how proteins use conformational dynamics to stabilize the charge-separation steps of electron-transfer reactions.


Asunto(s)
Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Bacterioclorofilas/metabolismo , Sitios de Unión/efectos de los fármacos , Clorofila/metabolismo , Clorofila/efectos de la radiación , Cristalografía , Citoplasma/metabolismo , Transporte de Electrón/efectos de los fármacos , Electrones , Hyphomicrobiaceae/enzimología , Hyphomicrobiaceae/metabolismo , Rayos Láser , Modelos Moleculares , Oxidación-Reducción/efectos de la radiación , Feofitinas/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/efectos de la radiación , Protones , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo , Vitamina K 2/metabolismo
3.
Nat Methods ; 17(1): 73-78, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31740816

RESUMEN

The European XFEL (EuXFEL) is a 3.4-km long X-ray source, which produces femtosecond, ultrabrilliant and spatially coherent X-ray pulses at megahertz (MHz) repetition rates. This X-ray source has been designed to enable the observation of ultrafast processes with near-atomic spatial resolution. Time-resolved crystallographic investigations on biological macromolecules belong to an important class of experiments that explore fundamental and functional structural displacements in these molecules. Due to the unusual MHz X-ray pulse structure at the EuXFEL, these experiments are challenging. Here, we demonstrate how a biological reaction can be followed on ultrafast timescales at the EuXFEL. We investigate the picosecond time range in the photocycle of photoactive yellow protein (PYP) with MHz X-ray pulse rates. We show that difference electron density maps of excellent quality can be obtained. The results connect the previously explored femtosecond PYP dynamics to timescales accessible at synchrotrons. This opens the door to a wide range of time-resolved studies at the EuXFEL.


Asunto(s)
Proteínas Bacterianas/química , Cristalografía por Rayos X/instrumentación , Cristalografía por Rayos X/métodos , Fotorreceptores Microbianos/química , Conformación Proteica , Luz , Modelos Moleculares , Factores de Tiempo
4.
Nature ; 530(7589): 202-6, 2016 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-26863980

RESUMEN

The three-dimensional structures of macromolecules and their complexes are mainly elucidated by X-ray protein crystallography. A major limitation of this method is access to high-quality crystals, which is necessary to ensure X-ray diffraction extends to sufficiently large scattering angles and hence yields information of sufficiently high resolution with which to solve the crystal structure. The observation that crystals with reduced unit-cell volumes and tighter macromolecular packing often produce higher-resolution Bragg peaks suggests that crystallographic resolution for some macromolecules may be limited not by their heterogeneity, but by a deviation of strict positional ordering of the crystalline lattice. Such displacements of molecules from the ideal lattice give rise to a continuous diffraction pattern that is equal to the incoherent sum of diffraction from rigid individual molecular complexes aligned along several discrete crystallographic orientations and that, consequently, contains more information than Bragg peaks alone. Although such continuous diffraction patterns have long been observed--and are of interest as a source of information about the dynamics of proteins--they have not been used for structure determination. Here we show for crystals of the integral membrane protein complex photosystem II that lattice disorder increases the information content and the resolution of the diffraction pattern well beyond the 4.5-ångström limit of measurable Bragg peaks, which allows us to phase the pattern directly. Using the molecular envelope conventionally determined at 4.5 ångströms as a constraint, we obtain a static image of the photosystem II dimer at a resolution of 3.5 ångströms. This result shows that continuous diffraction can be used to overcome what have long been supposed to be the resolution limits of macromolecular crystallography, using a method that exploits commonly encountered imperfect crystals and enables model-free phasing.


Asunto(s)
Cristalografía por Rayos X/métodos , Complejo de Proteína del Fotosistema II/química , Cristalización , Modelos Moleculares
5.
Nature ; 523(7562): 561-7, 2015 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-26200343

RESUMEN

G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ∼20° rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology.


Asunto(s)
Arrestina/química , Arrestina/metabolismo , Rodopsina/química , Rodopsina/metabolismo , Animales , Sitios de Unión , Cristalografía por Rayos X , Disulfuros/química , Disulfuros/metabolismo , Humanos , Rayos Láser , Ratones , Modelos Moleculares , Complejos Multiproteicos/biosíntesis , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Unión Proteica , Reproducibilidad de los Resultados , Transducción de Señal , Rayos X
6.
Proc Natl Acad Sci U S A ; 115(22): 5652-5657, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29760050

RESUMEN

The bright ultrafast pulses of X-ray Free-Electron Lasers allow investigation into the structure of matter under extreme conditions. We have used single pulses to ionize and probe water as it undergoes a phase transition from liquid to plasma. We report changes in the structure of liquid water on a femtosecond time scale when irradiated by single 6.86 keV X-ray pulses of more than 106 J/cm2 These observations are supported by simulations based on molecular dynamics and plasma dynamics of a water system that is rapidly ionized and driven out of equilibrium. This exotic ionic and disordered state with the density of a liquid is suggested to be structurally different from a neutral thermally disordered state.


Asunto(s)
Electrones , Calor , Rayos Láser , Agua/química , Cristalografía , Simulación de Dinámica Molecular , Factores de Tiempo
7.
Nature ; 513(7517): 261-5, 2014 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-25043005

RESUMEN

Photosynthesis, a process catalysed by plants, algae and cyanobacteria converts sunlight to energy thus sustaining all higher life on Earth. Two large membrane protein complexes, photosystem I and II (PSI and PSII), act in series to catalyse the light-driven reactions in photosynthesis. PSII catalyses the light-driven water splitting process, which maintains the Earth's oxygenic atmosphere. In this process, the oxygen-evolving complex (OEC) of PSII cycles through five states, S0 to S4, in which four electrons are sequentially extracted from the OEC in four light-driven charge-separation events. Here we describe time resolved experiments on PSII nano/microcrystals from Thermosynechococcus elongatus performed with the recently developed technique of serial femtosecond crystallography. Structures have been determined from PSII in the dark S1 state and after double laser excitation (putative S3 state) at 5 and 5.5 Å resolution, respectively. The results provide evidence that PSII undergoes significant conformational changes at the electron acceptor side and at the Mn4CaO5 core of the OEC. These include an elongation of the metal cluster, accompanied by changes in the protein environment, which could allow for binding of the second substrate water molecule between the more distant protruding Mn (referred to as the 'dangler' Mn) and the Mn3CaOx cubane in the S2 to S3 transition, as predicted by spectroscopic and computational studies. This work shows the great potential for time-resolved serial femtosecond crystallography for investigation of catalytic processes in biomolecules.


Asunto(s)
Cristalografía por Rayos X , Cianobacterias/química , Modelos Moleculares , Complejo de Proteína del Fotosistema II/química , Estructura Terciaria de Proteína
8.
J Chem Phys ; 152(8): 084307, 2020 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-32113333

RESUMEN

We report experimental results on the diffractive imaging of three-dimensionally aligned 2,5-diiodothiophene molecules. The molecules were aligned by chirped near-infrared laser pulses, and their structure was probed at a photon energy of 9.5 keV (λ ≈ 130 pm) provided by the Linac Coherent Light Source. Diffracted photons were recorded on the Cornell-SLAC pixel array detector, and a two-dimensional diffraction pattern of the equilibrium structure of 2,5-diiodothiophene was recorded. The retrieved distance between the two iodine atoms agrees with the quantum-chemically calculated molecular structure to be within 5%. The experimental approach allows for the imaging of intrinsic molecular dynamics in the molecular frame, albeit this requires more experimental data, which should be readily available at upcoming high-repetition-rate facilities.

9.
Proc Natl Acad Sci U S A ; 114(9): 2247-2252, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28202732

RESUMEN

To understand how molecules function in biological systems, new methods are required to obtain atomic resolution structures from biological material under physiological conditions. Intense femtosecond-duration pulses from X-ray free-electron lasers (XFELs) can outrun most damage processes, vastly increasing the tolerable dose before the specimen is destroyed. This in turn allows structure determination from crystals much smaller and more radiation sensitive than previously considered possible, allowing data collection from room temperature structures and avoiding structural changes due to cooling. Regardless, high-resolution structures obtained from XFEL data mostly use crystals far larger than 1 µm3 in volume, whereas the X-ray beam is often attenuated to protect the detector from damage caused by intense Bragg spots. Here, we describe the 2 Å resolution structure of native nanocrystalline granulovirus occlusion bodies (OBs) that are less than 0.016 µm3 in volume using the full power of the Linac Coherent Light Source (LCLS) and a dose up to 1.3 GGy per crystal. The crystalline shell of granulovirus OBs consists, on average, of about 9,000 unit cells, representing the smallest protein crystals to yield a high-resolution structure by X-ray crystallography to date. The XFEL structure shows little to no evidence of radiation damage and is more complete than a model determined using synchrotron data from recombinantly produced, much larger, cryocooled granulovirus granulin microcrystals. Our measurements suggest that it should be possible, under ideal experimental conditions, to obtain data from protein crystals with only 100 unit cells in volume using currently available XFELs and suggest that single-molecule imaging of individual biomolecules could almost be within reach.


Asunto(s)
Cristalografía/métodos , Electrones , Granulovirus/ultraestructura , Péptidos y Proteínas de Señalización Intercelular/química , Rayos Láser , Cristalografía/instrumentación , Granulovirus/química , Modelos Moleculares , Progranulinas , Estructura Secundaria de Proteína , Sincrotrones
10.
Opt Express ; 27(26): 37816-37833, 2019 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-31878556

RESUMEN

An outstanding question in X-ray single particle imaging experiments has been the feasibility of imaging sub 10-nm-sized biomolecules under realistic experimental conditions where very few photons are expected to be measured in a single snapshot and instrument background may be significant relative to particle scattering. While analyses of simulated data have shown that the determination of an average image should be feasible using Bayesian methods such as the EMC algorithm, this has yet to be demonstrated using experimental data containing realistic non-isotropic instrument background, sample variability and other experimental factors. In this work, we show that the orientation and phase retrieval steps work at photon counts diluted to the signal levels one expects from smaller molecules or with weaker pulses, using data from experimental measurements of 60-nm PR772 viruses. Even when the signal is reduced to a fraction as little as 1/256, the virus electron density determined using ab initio phasing is of almost the same quality as the high-signal data. However, we are still limited by the total number of patterns collected, which may soon be mitigated by the advent of high repetition-rate sources like the European XFEL and LCLS-II.

11.
BMC Biol ; 16(1): 59, 2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29848358

RESUMEN

BACKGROUND: Ever since the first atomic structure of an enzyme was solved, the discovery of the mechanism and dynamics of reactions catalyzed by biomolecules has been the key goal for the understanding of the molecular processes that drive life on earth. Despite a large number of successful methods for trapping reaction intermediates, the direct observation of an ongoing reaction has been possible only in rare and exceptional cases. RESULTS: Here, we demonstrate a general method for capturing enzyme catalysis "in action" by mix-and-inject serial crystallography (MISC). Specifically, we follow the catalytic reaction of the Mycobacterium tuberculosis ß-lactamase with the third-generation antibiotic ceftriaxone by time-resolved serial femtosecond crystallography. The results reveal, in near atomic detail, antibiotic cleavage and inactivation from 30 ms to 2 s. CONCLUSIONS: MISC is a versatile and generally applicable method to investigate reactions of biological macromolecules, some of which are of immense biological significance and might be, in addition, important targets for structure-based drug design. With megahertz X-ray pulse rates expected at the Linac Coherent Light Source II and the European X-ray free-electron laser, multiple, finely spaced time delays can be collected rapidly, allowing a comprehensive description of biomolecular reactions in terms of structure and kinetics from the same set of X-ray data.


Asunto(s)
Antibacterianos/química , Proteínas Bacterianas/química , Ceftriaxona/química , Cristalografía por Rayos X/métodos , Mycobacterium tuberculosis/enzimología , beta-Lactamasas/química , Proteínas Bacterianas/genética , Biocatálisis , Resistencia a las Cefalosporinas/genética , Cinética , Rayos Láser , Modelos Moleculares , Factores de Tiempo , beta-Lactamasas/genética
12.
Nat Methods ; 11(9): 923-6, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25108686

RESUMEN

We describe a method to measure ultrafast protein structural changes using time-resolved wide-angle X-ray scattering at an X-ray free-electron laser. We demonstrated this approach using multiphoton excitation of the Blastochloris viridis photosynthetic reaction center, observing an ultrafast global conformational change that arises within picoseconds and precedes the propagation of heat through the protein. This provides direct structural evidence for a 'protein quake': the hypothesis that proteins rapidly dissipate energy through quake-like structural motions.


Asunto(s)
Transferencia de Energía/efectos de la radiación , Rayos Láser , Ficobiliproteínas/efectos de la radiación , Ficobiliproteínas/ultraestructura , Dispersión del Ángulo Pequeño , Difracción de Rayos X/métodos , Ficobiliproteínas/química , Conformación Proteica/efectos de la radiación , Dosis de Radiación
13.
J Synchrotron Radiat ; 24(Pt 6): 1296-1298, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29091073

RESUMEN

The success of diffraction experiments from weakly scattering samples strongly depends on achieving an optimal signal-to-noise ratio. This is particularly important in single-particle imaging experiments where diffraction signals are typically very weak and the experiments are often accompanied by significant background scattering. A simple way to tremendously reduce background scattering by placing an aperture downstream of the sample has been developed and its application in a single-particle X-ray imaging experiment at FLASH is demonstrated. Using the concept of a post-sample aperture it was possible to reduce the background scattering levels by two orders of magnitude.

14.
Nature ; 470(7332): 73-7, 2011 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-21293373

RESUMEN

X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction 'snapshots' are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (∼200 nm to 2 µm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.


Asunto(s)
Cristalografía por Rayos X/métodos , Nanopartículas/química , Nanotecnología/métodos , Complejo de Proteína del Fotosistema I/química , Cristalografía por Rayos X/instrumentación , Rayos Láser , Modelos Moleculares , Nanotecnología/instrumentación , Conformación Proteica , Factores de Tiempo , Rayos X
15.
Nature ; 470(7332): 78-81, 2011 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-21293374

RESUMEN

X-ray lasers offer new capabilities in understanding the structure of biological systems, complex materials and matter under extreme conditions. Very short and extremely bright, coherent X-ray pulses can be used to outrun key damage processes and obtain a single diffraction pattern from a large macromolecule, a virus or a cell before the sample explodes and turns into plasma. The continuous diffraction pattern of non-crystalline objects permits oversampling and direct phase retrieval. Here we show that high-quality diffraction data can be obtained with a single X-ray pulse from a non-crystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source. Calculations indicate that the energy deposited into the virus by the pulse heated the particle to over 100,000 K after the pulse had left the sample. The reconstructed exit wavefront (image) yielded 32-nm full-period resolution in a single exposure and showed no measurable damage. The reconstruction indicates inhomogeneous arrangement of dense material inside the virion. We expect that significantly higher resolutions will be achieved in such experiments with shorter and brighter photon pulses focused to a smaller area. The resolution in such experiments can be further extended for samples available in multiple identical copies.


Asunto(s)
Mimiviridae/química , Difracción de Rayos X/instrumentación , Difracción de Rayos X/métodos , Electrones , Calor , Rayos Láser , Fotones , Factores de Tiempo , Rayos X
16.
Nat Methods ; 9(3): 263-5, 2012 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-22286383

RESUMEN

X-ray free electron laser (X-FEL)-based serial femtosecond crystallography is an emerging method with potential to rapidly advance the challenging field of membrane protein structural biology. Here we recorded interpretable diffraction data from micrometer-sized lipidic sponge phase crystals of the Blastochloris viridis photosynthetic reaction center delivered into an X-FEL beam using a sponge phase micro-jet.


Asunto(s)
Cristalografía por Rayos X/métodos , Membrana Dobles de Lípidos/química , Proteínas de la Membrana/química , Proteínas de la Membrana/ultraestructura , Unión Proteica , Conformación Proteica/efectos de la radiación , Rayos X
17.
Nat Methods ; 9(3): 259-62, 2012 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-22286384

RESUMEN

Protein crystallization in cells has been observed several times in nature. However, owing to their small size these crystals have not yet been used for X-ray crystallographic analysis. We prepared nano-sized in vivo-grown crystals of Trypanosoma brucei enzymes and applied the emerging method of free-electron laser-based serial femtosecond crystallography to record interpretable diffraction data. This combined approach will open new opportunities in structural systems biology.


Asunto(s)
Cristalografía por Rayos X/métodos , Cristalografía/métodos , Proteínas/química , Proteínas/ultraestructura , Unión Proteica/efectos de la radiación , Conformación Proteica/efectos de la radiación , Proteínas/efectos de la radiación , Solubilidad/efectos de la radiación , Rayos X
18.
J Synchrotron Radiat ; 22(3): 644-52, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25931080

RESUMEN

Serial femtosecond crystallography (SFX) is an emerging method for data collection at free-electron lasers (FELs) in which single diffraction snapshots are taken from a large number of crystals. The partial intensities collected in this way are then combined in a scheme called Monte Carlo integration, which provides the full diffraction intensities. However, apart from having to perform this merging, the Monte Carlo integration must also average out all variations in crystal quality, crystal size, X-ray beam properties and other factors, necessitating data collection from thousands of crystals. Because the pulses provided by FELs running in the typical self-amplified spontaneous emission (SASE) mode of operation have very irregular, spiky spectra that vary strongly from pulse to pulse, it has been suggested that this is an important source of variation contributing to inaccuracies in the intensities, and that, by using monochromatic pulses produced through a process called self-seeding, fewer images might be needed for Monte Carlo integration to converge, resulting in more accurate data. This paper reports the results of two experiments performed at the Linac Coherent Light Source in which data collected in both SASE and self-seeded mode were compared. Importantly, no improvement attributable to the use of self-seeding was detected. In addition, other possible sources of variation that affect SFX data quality were investigated, such as crystal-to-crystal variations reflected in the unit-cell parameters; however, these factors were found to have no influence on data quality either. Possibly, there is another source of variation as yet undetected that affects SFX data quality much more than any of the factors investigated here.

19.
J Synchrotron Radiat ; 22(2): 225-38, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25723924

RESUMEN

Proteins that contain metal cofactors are expected to be highly radiation sensitive since the degree of X-ray absorption correlates with the presence of high-atomic-number elements and X-ray energy. To explore the effects of local damage in serial femtosecond crystallography (SFX), Clostridium ferredoxin was used as a model system. The protein contains two [4Fe-4S] clusters that serve as sensitive probes for radiation-induced electronic and structural changes. High-dose room-temperature SFX datasets were collected at the Linac Coherent Light Source of ferredoxin microcrystals. Difference electron density maps calculated from high-dose SFX and synchrotron data show peaks at the iron positions of the clusters, indicative of decrease of atomic scattering factors due to ionization. The electron density of the two [4Fe-4S] clusters differs in the FEL data, but not in the synchrotron data. Since the clusters differ in their detailed architecture, this observation is suggestive of an influence of the molecular bonding and geometry on the atomic displacement dynamics following initial photoionization. The experiments are complemented by plasma code calculations.


Asunto(s)
Ferredoxinas/efectos de la radiación , Metaloproteínas/efectos de la radiación , Sincrotrones , Clostridium/efectos de la radiación , Cristalografía por Rayos X/métodos , Relación Dosis-Respuesta en la Radiación , Humanos , Modelos Moleculares , Traumatismos por Radiación , Sensibilidad y Especificidad
20.
Opt Express ; 23(22): 28459-70, 2015 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-26561117

RESUMEN

Recent advances in X-ray detector technology have resulted in the introduction of segmented detectors composed of many small detector modules tiled together to cover a large detection area. Due to mechanical tolerances and the desire to be able to change the module layout to suit the needs of different experiments, the pixels on each module might not align perfectly on a regular grid. Several detectors are designed to permit detector sub-regions (or modules) to be moved relative to each other for different experiments. Accurate determination of the location of detector elements relative to the beam-sample interaction point is critical for many types of experiment, including X-ray crystallography, coherent diffractive imaging (CDI), small angle X-ray scattering (SAXS) and spectroscopy. For detectors with moveable modules, the relative positions of pixels are no longer fixed, necessitating the development of a simple procedure to calibrate detector geometry after reconfiguration. We describe a simple and robust method for determining the geometry of segmented X-ray detectors using measurements obtained by serial crystallography. By comparing the location of observed Bragg peaks to the spot locations predicted from the crystal indexing procedure, the position, rotation and distance of each module relative to the interaction region can be refined. We show that the refined detector geometry greatly improves the results of experiments.


Asunto(s)
Algoritmos , Cristalografía por Rayos X/instrumentación , Cristalografía por Rayos X/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/instrumentación , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Calibración , Diseño de Equipo , Análisis de Falla de Equipo , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA