Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Earth Sci Inform ; 15(3): 1471-1480, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36003899

RESUMEN

NASA's Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) carries a laser altimeter that fires 10,000 pulses per second towards Earth and records the travel time of individual photons to measure the elevation of the surface below. The volume of data produced by ICESat-2, nearly a TB per day, presents significant challenges for users wishing to efficiently explore the dataset. NASA's National Snow and Ice Data Center (NSIDC) Distributed Active Archive Center (DAAC), which is responsible for archiving and distributing ICESat-2 data, provides search and subsetting services on mission data products, but providing interactive data discovery and visualization tools needed to assess data coverage and quality in a given area of interest is outside of NSIDC's mandate. The OpenAltimetry project, a NASA-funded collaboration between NSIDC, UNAVCO and the University of California San Diego, has developed a web-based cyberinfrastructure platform that allows users to locate, visualize, and download ICESat-2 surface elevation data and photon clouds for any location on Earth, on demand. OpenAltimetry also provides access to elevations and waveforms for ICESat (the predecessor mission to ICESat-2). In addition, OpenAltimetry enables data access via APIs, opening opportunities for rapid access, experimentation, and computation via third party applications like Jupyter notebooks. OpenAltimetry emphasizes ease-of-use for new users and rapid access to entire altimetry datasets for experts and has been successful in meeting the needs of different user groups. In this paper we describe the principles that guided the design and development of the OpenAltimetry platform and provide a high-level overview of the cyberinfrastructure components of the system.

2.
Stud Health Technol Inform ; 112: 100-9, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15923720

RESUMEN

Through support from the National Institutes of Health's National Center for Research Resources, the Biomedical Informatics Research Network (BIRN) is pioneering the use of advanced cyberinfrastructure for medical research. By synchronizing developments in advanced wide area networking, distributed computing, distributed database federation, and other emerging capabilities of e-science, the BIRN has created a collaborative environment that is paving the way for biomedical research and clinical information management. The BIRN Coordinating Center (BIRN-CC) is orchestrating the development and deployment of key infrastructure components for immediate and long-range support of biomedical and clinical research being pursued by domain scientists in three neuroimaging test beds.


Asunto(s)
Investigación Biomédica/organización & administración , Diagnóstico por Imagen , Sistemas de Información/instrumentación , Enfermedades del Sistema Nervioso , Sistemas de Computación , Humanos , National Institutes of Health (U.S.) , Integración de Sistemas , Estados Unidos
3.
OMICS ; 15(4): 209-12, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21476842

RESUMEN

The life sciences are poised at the beginning of a paradigm-changing evolution in the way scientific questions are answered. Data-Intensive Science (DIS) promise to provide new ways of approaching scientific challenges and answering questions. This article is a summary of the life sciences issues and challenges as discussed in the DIS workshop in Seattle, September 19-20, 2010.


Asunto(s)
Disciplinas de las Ciencias Biológicas/métodos , Biología/métodos
4.
Transl Behav Med ; 1(1): 83-88, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21516142

RESUMEN

Improved approaches and methodologies are needed to conduct comparative effectiveness research (CER) in oncology. While cancer therapies continue to emerge at a rapid pace, the review, synthesis, and dissemination of evidence-based interventions across clinical trials lag in comparison. Rigorous and systematic testing of competing therapies has been clouded by age-old problems: poor patient adherence, inability to objectively measure the environmental influences on health, lack of knowledge about patients' lifestyle behaviors that may affect cancer's progression and recurrence, and limited ability to compile and interpret the wide range of variables that must be considered in the cancer treatment. This lack of data integration limits the potential for patients and clinicians to engage in fully informed decision-making regarding cancer prevention, treatment, and survivorship care, and the translation of research results into mainstream medical care. Particularly important, as noted in a 2009 report on CER to the President and Congress, the limited focus on health behavior-change interventions was a major hindrance in this research landscape (DHHS 2009). This paper describes an initiative to improve CER for cancer by addressing several of these limitations. The Cyberinfrastructure for Comparative Effectiveness Research (CYCORE) project, informed by the National Science Foundation's 2007 report "Cyberinfrastructure Vision for 21(st) Century Discovery" has, as its central aim, the creation of a prototype for a user-friendly, open-source cyberinfrastructure (CI) that supports acquisition, storage, visualization, analysis, and sharing of data important for cancer-related CER. Although still under development, the process of gathering requirements for CYCORE has revealed new ways in which CI design can significantly improve the collection and analysis of a wide variety of data types, and has resulted in new and important partnerships among cancer researchers engaged in advancing health-related CI.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA