RESUMEN
The study was conducted to determine the proportion and concentration of enterohemorrhagic Escherichia coli (EHEC) O157 and six non-O157 (O26, O45, O103, O111, O121, and O145) serogroups and identify seasonal and processing plant differences in feces and on hides of cull dairy cattle processed in commercial slaughterhouses in the United States. Approximately 60 rectal and 60 hide-on samples from matched carcasses were collected in each of three processing plants, in two periods; summer of 2017 and spring of 2018. Samples before enrichment were spiral plated to quantify EHEC, and postenriched samples underwent culture methods that included immuno-magnetic separation, plating on selective media, and PCR assays for identification and serogroup confirmation of putative isolates. An isolate was considered EHEC O157 positive if it harbored serogroup-specific (rfbE), Shiga toxin (stx1 and/or stx2), and intimin (eae) genes and EHEC non-O157 positive if at least one of the non-O157 serogroup-specific, stx1 and/or stx2, and eae genes was identified. Generalized linear mixed models were fitted to estimate overall proportion of positives for EHEC O157 and non-O157 EHEC serogroups, as well as seasonal and processing plant differences in fecal and hide-on proportion of positives. The fecal EHEC proportion at the sample level was 1.8% (95% CI = 0.0-92.2%) and 4.2% (95% CI = 0.0-100.0%) for EHEC O157 and EHEC non-O157, respectively. Hide sample level proportion of positives was 3.0% (95% CI = 0.0-99.9%) for EHEC O157 and 1.6% (95% CI = 0.0-100.0%) for EHEC non-O157. The proportion of EHEC O157 and non-O157 significantly differed by processing plant and sample type (hide vs. feces), but not by season. The association between proportion of EHEC serogroups in feces with the proportion on hides collected from matched cattle was 7.8% (95% CI = 0.6-53.3%) and 3.8% (95% CI = 0.3-30.8%) for EHEC O157 and non-O157, respectively. Taken together, our findings provide evidence of a low proportion of EHEC serogroups in the feces and on hides of cull dairy cattle and that their proportion varies across processing plants.
RESUMEN
IntroductionTwo large multicentre European hospital networks have estimated vaccine effectiveness (VE) against COVID-19 since 2021.AimWe aimed to measure VE against PCR-confirmed SARS-CoV-2 in hospitalised severe acute respiratory illness (SARI) patients ≥ 20 years, combining data from these networks during Alpha (March-June)- and Delta (June-December)-dominant periods, 2021.MethodsForty-six participating hospitals across 14 countries follow a similar generic protocol using the test-negative case-control design. We defined complete primary series vaccination (PSV) as two doses of a two-dose or one of a single-dose vaccine ≥ 14 days before onset.ResultsWe included 1,087 cases (538 controls) and 1,669 cases (1,442 controls) in the Alpha- and Delta-dominant periods, respectively. During the Alpha period, VE against hospitalisation with SARS-CoV2 for complete Comirnaty PSV was 85% (95%â¯CI: 69-92) overall and 75% (95%â¯CI: 42-90) in those aged ≥ 80 years. During the Delta period, among SARI patients ≥ 20 years with symptom onset ≥ 150 days from last PSV dose, VE for complete Comirnaty PSV was 54% (95%â¯CI: 18-74). Among those receiving Comirnaty PSV and mRNA booster (any product) ≥ 150 days after last PSV dose, VE was 91% (95%â¯CI: 57-98). In time-since-vaccination analysis, complete all-product PSV VE was > 90% in those with their last dose < 90 days before onset; ≥ 70% in those 90-179 days before onset.ConclusionsOur results from this EU multi-country hospital setting showed that VE for complete PSV alone was higher in the Alpha- than the Delta-dominant period, and addition of a first booster dose during the latter period increased VE to over 90%.
Asunto(s)
COVID-19 , Humanos , Adulto , COVID-19/epidemiología , COVID-19/prevención & control , Vacuna BNT162 , ARN Viral , SARS-CoV-2 , Eficacia de las Vacunas , Hospitalización , Europa (Continente)/epidemiologíaRESUMEN
IntroductionThe I-MOVE-COVID-19 and VEBIS hospital networks have been measuring COVID-19 vaccine effectiveness (VE) in participating European countries since early 2021.AimWe aimed to measure VE against PCR-confirmed SARS-CoV-2 in patients ≥ 20 years hospitalised with severe acute respiratory infection (SARI) from December 2021 to July 2022 (Omicron-dominant period).MethodsIn both networks, 46 hospitals (13 countries) follow a similar test-negative case-control protocol. We defined complete primary series vaccination (PSV) and first booster dose vaccination as last dose of either vaccine received ≥ 14 days before symptom onset (stratifying first booster into received < 150 and ≥ 150 days after last PSV dose). We measured VE overall, by vaccine category/product, age group and time since first mRNA booster dose, adjusting by site as a fixed effect, and by swab date, age, sex, and presence/absence of at least one commonly collected chronic condition.ResultsWe included 2,779 cases and 2,362 controls. The VE of all vaccine products combined against hospitalisation for laboratory-confirmed SARS-CoV-2 was 43% (95%â¯CI: 29-54) for complete PSV (with last dose received ≥ 150 days before onset), while it was 59% (95%â¯CI: 51-66) after addition of one booster dose. The VE was 85% (95%â¯CI: 78-89), 70% (95%â¯CI: 61-77) and 36% (95%â¯CI: 17-51) for those with onset 14-59 days, 60-119 days and 120-179 days after booster vaccination, respectively.ConclusionsOur results suggest that, during the Omicron period, observed VE against SARI hospitalisation improved with first mRNA booster dose, particularly for those having symptom onset < 120 days after first booster dose.
Asunto(s)
COVID-19 , Neumonía , Humanos , Adulto , COVID-19/prevención & control , Vacunas contra la COVID-19 , Eficacia de las Vacunas , SARS-CoV-2 , Hospitalización , Europa (Continente)/epidemiología , ARN MensajeroRESUMEN
On 14 February 2021, Lebanon implemented nationwide vaccination, offering the Pfizer-BioNTech (BNT162b2) vaccine to adults over 50 years of age. We estimated the effectiveness of the Pfizer-BioNTech vaccine in preventing symptomatic laboratory-confirmed COVID-19. We conducted a test-negative case-control (TND) study among symptomatic adults aged 50 years and older who presented with influenza-like illness (ILI) or COVID-19-like illness (CLI) in surveillance sentinel sites between 1 July and 31 December 2021. Unvaccinated participants did not receive any vaccine dose before symptom onset. Vaccinated participants received at least one dose within 14 days before onset of symptoms. We estimated vaccine effectiveness against symptomatic laboratory-confirmed COVID-19, adjusted for demographic and behavioral factors, using multivariable logistic regression. Out of 457 participants with symptoms, 150 (33%) were positive and 307 (67%) were negative for SARS-CoV-2. Adjusted vaccine effectiveness was 22% (95% CI: -70-65%) for those partially vaccinated and 44% (95% CI: 6-67%) for those fully vaccinated. Vaccination with two doses of the Pfizer-BioNTech vaccine was effective in preventing COVID-19 symptomatic illness in the older population. Vaccine effectiveness was lower for those partially vaccinated. We recommend enhancing vaccine uptake with at least one dose among risk groups for COVID-19 and keeping general recommendations on contact and droplet precautions in the general population.
RESUMEN
Our objectives were to determine whether the feedlot-level use of a direct-fed microbial (DFM; Lactobacillus animalis LA51 and Propionibacterium freudenreichii PF24; Bovamine Defend®, 2 × 109 CFU/g) was associated with fecal prevalence and concentration of E. coli O157:H7, and determine pen- and feedlot-level risk factors associated with fecal E. coli O157:H7 prevalence in cattle pens from commercial feedlot operations. Twenty commercial feedlots in Nebraska, ten that included DFM (DFM) and ten that did not (no-DFM), were sampled during the summer of 2017. In each sampling month, 22 pen-floor fecal samples were collected from three pens in each feedlot. Samples were subjected to cultural and molecular procedures for the detection of E. coli O157:H7 (immunomagnetic separation, plating on selective media, followed by PCR confirmation) and spiral plating for quantification. A total of 1,320 samples from 180 pens of finishing cattle belonging to 20 feedlots, which were sampled three times throughout a 12-week period, were processed and tested. Across all feedlots and sampling months, the mean within-pen prevalence was 13.5% (95% CI = 2.6-47.4%). The association between DFM status and the within-pen prevalence of E. coli O157:H7 depended significantly (p < 0.05) on the sampling month. The second sampling month between late July and mid-August corresponded to the highest within-pen prevalence estimates reported in this study, with no-DFM pens having a higher prevalence than DFM pens. After accounting for the DFM status, and based on multivariable analyses, sampling month, average pen body weight, and weather conditions were significantly associated with the within-pen fecal prevalence of E. coli O157:H7. Collectively, these findings demonstrate that the use of a DFM containing Lactobacillus animalis LA51 and Propionibacterium freudenreichii PF26 in feedlots showed potential in reducing fecal E. coli O157:H7 prevalence in cattle during times when prevalence peaks.
RESUMEN
INTRODUCTION: Cholera remains a substantial public health challenge in Somalia. Ongoing droughts in the country have caused significant outbreaks which have negatively affected the lives of many individuals and overwhelmed health facilities. We aimed to estimate the costs associated with cholera cases for households and health facilities in Somalia. METHODS: This cost-of-illness study was conducted in five cholera treatment centres in Somalia and 400 patients treated in these facilities. Data collection took place during October and November 2023. Given that a significant portion of the patients were children, we interviewed their caregivers to gather cost data. We interviewed staff at the centres and the patients. The data obtained from the household questionnaire covered direct (medical and non-medical) and indirect (lost wages) costs, while direct costs were estimated for the health facility (personnel salaries, drugs and consumables used to treat a patient, and utility expenses). All costs were calculated in US dollars (USD), using 2023 as the base year for the estimation. RESULTS: The average total cost of a cholera episode for a household was US$ 33.94 (2023 USD), with 50.4% (US$ 17.12) being direct costs and 49.6% (US$ 16.82) indirect costs. The average total cost for a health facility to treat an episode of cholera was US$ 82.65. The overall average cost to households and health facilities was US$ 116.59. The average length of stay for a patient was 3.08 days. In the households, patients aged 41 years and older incurred the highest mean total cost (US$ 73.90) while patients younger than 5 years had the lowest cost (US$ 21.02). Additionally, 61.8% of households had to use family savings to cover the cost of the cholera episode, while 14.5% had to borrow money. Most patients (71.8%) were younger than 16 years- 45.3% were 5 years or younger- and 94.0% had never received a cholera vaccine. CONCLUSION: Our study suggests that preventing one cholera episode in Somalia could avert substantial losses for both the households and cholera treatment centres. The findings shed light on the expenses associated with cholera that extend beyond healthcare, including substantial direct and indirect costs borne by households. Preventing cholera cases could lead to a decrease in this economic burden, consequently our study supports the need for preventive measures.
Asunto(s)
Cólera , Costo de Enfermedad , Composición Familiar , Instituciones de Salud , Humanos , Cólera/economía , Cólera/epidemiología , Cólera/terapia , Cólera/prevención & control , Femenino , Masculino , Somalia/epidemiología , Adulto , Instituciones de Salud/economía , Instituciones de Salud/estadística & datos numéricos , Niño , Adolescente , Preescolar , Adulto Joven , Persona de Mediana Edad , Lactante , Costos de la Atención en Salud/estadística & datos numéricos , Brotes de Enfermedades/economía , Brotes de Enfermedades/prevención & controlRESUMEN
Background: COVID-19 is primarily known as a respiratory illness; however, many patients present to hospital without respiratory symptoms. The association between non-respiratory presentations of COVID-19 and outcomes remains unclear. We investigated risk factors and clinical outcomes in patients with no respiratory symptoms (NRS) and respiratory symptoms (RS) at hospital admission. Methods: This study describes clinical features, physiological parameters, and outcomes of hospitalised COVID-19 patients, stratified by the presence or absence of respiratory symptoms at hospital admission. RS patients had one or more of: cough, shortness of breath, sore throat, runny nose or wheezing; while NRS patients did not. Results: Of 178,640 patients in the study, 86.4 % presented with RS, while 13.6 % had NRS. NRS patients were older (median age: NRS: 74 vs RS: 65) and less likely to be admitted to the ICU (NRS: 36.7 % vs RS: 37.5 %). NRS patients had a higher crude in-hospital case-fatality ratio (NRS 41.1 % vs. RS 32.0 %), but a lower risk of death after adjusting for confounders (HR 0.88 [0.83-0.93]). Conclusion: Approximately one in seven COVID-19 patients presented at hospital admission without respiratory symptoms. These patients were older, had lower ICU admission rates, and had a lower risk of in-hospital mortality after adjusting for confounders.
RESUMEN
By December 2021, administration of the third dose of COVID-19 vaccinations coincided with the spread of the Omicron variant in Europe. Questions had been raised on protection against infection conferred by previous vaccination and/or infection. Our study population included 252,433 participants from the COVID-19 vaccination registry in Malta. Data were then matched with the national testing database. We collected vaccination status, vaccine brand, vaccination date, infection history, and age. Using logistic regression, we examined different combinations of vaccine dose, prior infection status and time, and the odds of infection during the period when the Omicron variant was the dominant variant in Malta. Participants infected with Sars-Cov-2 prior to the Omicron wave had a significantly lower odds of being infected with the Omicron variant. Additionally, the more recent the infection and the more recent the vaccination, the lower the odds of infection. Receiving a third dose within 20 weeks of the start of the Omicron wave in Malta offered similar odds of infection as receiving a second dose within the same period. Time since vaccination was a strong determinant against infection, as was previous infection status and the number of doses taken. This finding reinforces the importance of future booster dose provision especially to vulnerable populations.
Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Malta/epidemiología , COVID-19/prevención & control , SARS-CoV-2 , Inmunidad AdaptativaRESUMEN
BACKGROUND: Using a large dataset, we evaluated prevalence and severity of alterations in liver enzymes in COVID-19 and association with patient-centred outcomes. METHODS: We included hospitalized patients with confirmed or suspected SARS-CoV-2 infection from the International Severe Acute Respiratory and emerging Infection Consortium (ISARIC) database. Key exposure was baseline liver enzymes (AST, ALT, bilirubin). Patients were assigned Liver Injury Classification score based on 3 components of enzymes at admission: Normal; Stage I) Liver injury: any component between 1-3x upper limit of normal (ULN); Stage II) Severe liver injury: any component ≥3x ULN. Outcomes were hospital mortality, utilization of selected resources, complications, and durations of hospital and ICU stay. Analyses used logistic regression with associations expressed as adjusted odds ratios (OR) with 95% confidence intervals (CI). RESULTS: Of 17,531 included patients, 46.2% (8099) and 8.2% (1430) of patients had stage 1 and 2 liver injury respectively. Compared to normal, stages 1 and 2 were associated with higher odds of mortality (OR 1.53 [1.37-1.71]; OR 2.50 [2.10-2.96]), ICU admission (OR 1.63 [1.48-1.79]; OR 1.90 [1.62-2.23]), and invasive mechanical ventilation (OR 1.43 [1.27-1.70]; OR 1.95 (1.55-2.45). Stages 1 and 2 were also associated with higher odds of developing sepsis (OR 1.38 [1.27-1.50]; OR 1.46 [1.25-1.70]), acute kidney injury (OR 1.13 [1.00-1.27]; OR 1.59 [1.32-1.91]), and acute respiratory distress syndrome (OR 1.38 [1.22-1.55]; OR 1.80 [1.49-2.17]). CONCLUSIONS: Liver enzyme abnormalities are common among COVID-19 patients and associated with worse outcomes.
Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , SARS-CoV-2 , Hígado , Pacientes , Estudios de CohortesRESUMEN
BACKGROUND: Individuals vaccinated against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), when infected, can still develop disease that requires hospitalization. It remains unclear whether these patients differ from hospitalized unvaccinated patients with regard to presentation, coexisting comorbidities, and outcomes. METHODS: Here, we use data from an international consortium to study this question and assess whether differences between these groups are context specific. Data from 83,163 hospitalized COVID-19 patients (34,843 vaccinated, 48,320 unvaccinated) from 38 countries were analyzed. FINDINGS: While typical symptoms were more often reported in unvaccinated patients, comorbidities, including some associated with worse prognosis in previous studies, were more common in vaccinated patients. Considerable between-country variation in both in-hospital fatality risk and vaccinated-versus-unvaccinated difference in this outcome was observed. CONCLUSIONS: These findings will inform allocation of healthcare resources in future surges as well as design of longer-term international studies to characterize changes in clinical profile of hospitalized COVID-19 patients related to vaccination history. FUNDING: This work was made possible by the UK Foreign, Commonwealth and Development Office and Wellcome (215091/Z/18/Z, 222410/Z/21/Z, 225288/Z/22/Z, and 220757/Z/20/Z); the Bill & Melinda Gates Foundation (OPP1209135); and the philanthropic support of the donors to the University of Oxford's COVID-19 Research Response Fund (0009109). Additional funders are listed in the "acknowledgments" section.
Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , SARS-CoV-2 , Hospitalización , Hospitales , VacunaciónRESUMEN
BACKGROUND: We describe demographic features, treatments and clinical outcomes in the International Severe Acute Respiratory and emerging Infection Consortium (ISARIC) COVID-19 cohort, one of the world's largest international, standardized data sets concerning hospitalized patients. METHODS: The data set analysed includes COVID-19 patients hospitalized between January 2020 and January 2022 in 52 countries. We investigated how symptoms on admission, co-morbidities, risk factors and treatments varied by age, sex and other characteristics. We used Cox regression models to investigate associations between demographics, symptoms, co-morbidities and other factors with risk of death, admission to an intensive care unit (ICU) and invasive mechanical ventilation (IMV). RESULTS: Data were available for 689â572 patients with laboratory-confirmed (91.1%) or clinically diagnosed (8.9%) SARS-CoV-2 infection from 52 countries. Age [adjusted hazard ratio per 10 years 1.49 (95% CI 1.48, 1.49)] and male sex [1.23 (1.21, 1.24)] were associated with a higher risk of death. Rates of admission to an ICU and use of IMV increased with age up to age 60 years then dropped. Symptoms, co-morbidities and treatments varied by age and had varied associations with clinical outcomes. The case-fatality ratio varied by country partly due to differences in the clinical characteristics of recruited patients and was on average 21.5%. CONCLUSIONS: Age was the strongest determinant of risk of death, with a â¼30-fold difference between the oldest and youngest groups; each of the co-morbidities included was associated with up to an almost 2-fold increase in risk. Smoking and obesity were also associated with a higher risk of death. The size of our international database and the standardized data collection method make this study a comprehensive international description of COVID-19 clinical features. Our findings may inform strategies that involve prioritization of patients hospitalized with COVID-19 who have a higher risk of death.
Asunto(s)
COVID-19 , Humanos , Masculino , Niño , Persona de Mediana Edad , COVID-19/terapia , SARS-CoV-2 , Unidades de Cuidados Intensivos , Modelos de Riesgos Proporcionales , Factores de Riesgo , HospitalizaciónRESUMEN
Introduction: Case definitions are used to guide clinical practice, surveillance and research protocols. However, how they identify COVID-19-hospitalised patients is not fully understood. We analysed the proportion of hospitalised patients with laboratory-confirmed COVID-19, in the ISARIC prospective cohort study database, meeting widely used case definitions. Methods: Patients were assessed using the Centers for Disease Control (CDC), European Centre for Disease Prevention and Control (ECDC), World Health Organization (WHO) and UK Health Security Agency (UKHSA) case definitions by age, region and time. Case fatality ratios (CFRs) and symptoms of those who did and who did not meet the case definitions were evaluated. Patients with incomplete data and non-laboratory-confirmed test result were excluded. Results: A total of 263,218 of the patients (42%) in the ISARIC database were included. Most patients (90.4%) were from Europe and Central Asia. The proportions of patients meeting the case definitions were 56.8% (WHO), 74.4% (UKHSA), 81.6% (ECDC) and 82.3% (CDC). For each case definition, patients at the extremes of age distribution met the criteria less frequently than those aged 30 to 70 years; geographical and time variations were also observed. Estimated CFRs were similar for the patients who met the case definitions. However, when more patients did not meet the case definition, the CFR increased. Conclusions: The performance of case definitions might be different in different regions and may change over time. Similarly concerning is the fact that older patients often did not meet case definitions, risking delayed medical care. While epidemiologists must balance their analytics with field applicability, ongoing revision of case definitions is necessary to improve patient care through early diagnosis and limit potential nosocomial spread.
Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , COVID-19/epidemiología , Estudios Prospectivos , Hospitalización , Europa (Continente)/epidemiología , HospitalesRESUMEN
BACKGROUND: In late 2020, the European Centre for Disease Prevention and Control and Epiconcept started implementing a surveillance system for severe acute respiratory infections (SARI) across Europe. OBJECTIVE: We sought to describe the process of digitizing and upgrading SARI surveillance in Malta, an island country with a centralized health system, during the COVID-19 pandemic from February to November 2021. We described the characteristics of people included in the surveillance system and compared different SARI case definitions, including their advantages and disadvantages. This study also discusses the process, output, and future for SARI and other public health surveillance opportunities. METHODS: Malta has one main public hospital where, on admission, patient data are entered into electronic records as free text. Symptoms and comorbidities are manually extracted from these records, whereas other data are collected from registers. Collected data are formatted to produce weekly and monthly reports to inform public health actions. From October 2020 to February 2021, we established an analogue incidence-based system for SARI surveillance. From February 2021 onward, we mapped key stakeholders and digitized most surveillance processes. RESULTS: By November 30, 2021, 903 SARI cases were reported, with 380 (42.1%) positive for SARS-CoV-2. Of all SARI hospitalizations, 69 (7.6%) were admitted to the intensive care unit, 769 (85.2%) were discharged, 27 (3%) are still being treated, and 107 (11.8%) died. Among the 107 patients who died, 96 (89.7%) had more than one underlying condition, the most common of which were hypertension (n=57, 53.3%) and chronic heart disease (n=49, 45.8%). CONCLUSIONS: The implementation of enhanced SARI surveillance in Malta was completed by the end of May 2021, allowing the monitoring of SARI incidence and patient characteristics. A future shift to register-based surveillance should improve SARI detection through automated processes.
Asunto(s)
COVID-19 , Gripe Humana , Humanos , Pandemias , SARS-CoV-2 , Gripe Humana/epidemiología , COVID-19/epidemiología , Malta/epidemiologíaRESUMEN
The International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC) COVID-19 dataset is one of the largest international databases of prospectively collected clinical data on people hospitalized with COVID-19. This dataset was compiled during the COVID-19 pandemic by a network of hospitals that collect data using the ISARIC-World Health Organization Clinical Characterization Protocol and data tools. The database includes data from more than 705,000 patients, collected in more than 60 countries and 1,500 centres worldwide. Patient data are available from acute hospital admissions with COVID-19 and outpatient follow-ups. The data include signs and symptoms, pre-existing comorbidities, vital signs, chronic and acute treatments, complications, dates of hospitalization and discharge, mortality, viral strains, vaccination status, and other data. Here, we present the dataset characteristics, explain its architecture and how to gain access, and provide tools to facilitate its use.
Asunto(s)
COVID-19 , Hospitalización , Humanos , Pandemias , Estudios Prospectivos , SARS-CoV-2RESUMEN
Background: Whilst timely clinical characterisation of infections caused by novel SARS-CoV-2 variants is necessary for evidence-based policy response, individual-level data on infecting variants are typically only available for a minority of patients and settings. Methods: Here, we propose an innovative approach to study changes in COVID-19 hospital presentation and outcomes after the Omicron variant emergence using publicly available population-level data on variant relative frequency to infer SARS-CoV-2 variants likely responsible for clinical cases. We apply this method to data collected by a large international clinical consortium before and after the emergence of the Omicron variant in different countries. Results: Our analysis, that includes more than 100,000 patients from 28 countries, suggests that in many settings patients hospitalised with Omicron variant infection less often presented with commonly reported symptoms compared to patients infected with pre-Omicron variants. Patients with COVID-19 admitted to hospital after Omicron variant emergence had lower mortality compared to patients admitted during the period when Omicron variant was responsible for only a minority of infections (odds ratio in a mixed-effects logistic regression adjusted for likely confounders, 0.67 [95% confidence interval 0.61-0.75]). Qualitatively similar findings were observed in sensitivity analyses with different assumptions on population-level Omicron variant relative frequencies, and in analyses using available individual-level data on infecting variant for a subset of the study population. Conclusions: Although clinical studies with matching viral genomic information should remain a priority, our approach combining publicly available data on variant frequency and a multi-country clinical characterisation dataset with more than 100,000 records allowed analysis of data from a wide range of settings and novel insights on real-world heterogeneity of COVID-19 presentation and clinical outcome. Funding: Bronner P. Gonçalves, Peter Horby, Gail Carson, Piero L. Olliaro, Valeria Balan, Barbara Wanjiru Citarella, and research costs were supported by the UK Foreign, Commonwealth and Development Office (FCDO) and Wellcome [215091/Z/18/Z, 222410/Z/21/Z, 225288/Z/22/Z]; and Janice Caoili and Madiha Hashmi were supported by the UK FCDO and Wellcome [222048/Z/20/Z]. Peter Horby, Gail Carson, Piero L. Olliaro, Kalynn Kennon and Joaquin Baruch were supported by the Bill & Melinda Gates Foundation [OPP1209135]; Laura Merson was supported by University of Oxford's COVID-19 Research Response Fund - with thanks to its donors for their philanthropic support. Matthew Hall was supported by a Li Ka Shing Foundation award to Christophe Fraser. Moritz U.G. Kraemer was supported by the Branco Weiss Fellowship, Google.org, the Oxford Martin School, the Rockefeller Foundation, and the European Union Horizon 2020 project MOOD (#874850). The contents of this publication are the sole responsibility of the authors and do not necessarily reflect the views of the European Commission. Contributions from Srinivas Murthy, Asgar Rishu, Rob Fowler, James Joshua Douglas, François Martin Carrier were supported by CIHR Coronavirus Rapid Research Funding Opportunity OV2170359 and coordinated out of Sunnybrook Research Institute. Contributions from Evert-Jan Wils and David S.Y. Ong were supported by a grant from foundation Bevordering Onderzoek Franciscus; and Andrea Angheben by the Italian Ministry of Health "Fondi Ricerca corrente-L1P6" to IRCCS Ospedale Sacro Cuore-Don Calabria. The data contributions of J.Kenneth Baillie, Malcolm G. Semple, and Ewen M. Harrison were supported by grants from the National Institute for Health Research (NIHR; award CO-CIN-01), the Medical Research Council (MRC; grant MC_PC_19059), and by the NIHR Health Protection Research Unit (HPRU) in Emerging and Zoonotic Infections at University of Liverpool in partnership with Public Health England (PHE) (award 200907), NIHR HPRU in Respiratory Infections at Imperial College London with PHE (award 200927), Liverpool Experimental Cancer Medicine Centre (grant C18616/A25153), NIHR Biomedical Research Centre at Imperial College London (award IS-BRC-1215-20013), and NIHR Clinical Research Network providing infrastructure support. All funders of the ISARIC Clinical Characterisation Group are listed in the appendix.
Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , COVID-19/virología , Humanos , SARS-CoV-2/genéticaRESUMEN
Blood leukocyte differentials can be useful for understanding changes associated with bovine respiratory disease (BRD) progression. By improving turnaround time, point-of-care leukocyte differential assays (PCLD) may provide logistical advantages to laboratory-based assays. Our objective was to assess BRD progression in steers challenged with bovine herpesvirus 1 and Mannheimia haemolytica using point-of-care and laboratory-based blood leukocyte differentials. Thirty Holstein steers (average body weight of 211 kg + 2.4 kg) were inoculated intranasally on day 0 with bovine herpesvirus 1 and intrabronchially on day 6 with Mannheimia haemolytica. Blood leukocytes differentials were measured using both assays from study days 0 to 13. Linear mixed models were fitted to evaluate the associations between: (1) the type of assay (laboratory-based or PCLD) with respect to leukocyte, lymphocyte, and neutrophil concentrations; (2) study day with cell concentrations; and (3) cell concentrations with lung consolidation measured at necropsy. Point-of-care leukocyte, lymphocyte, and neutrophil concentrations were significantly associated (P < 0.05) with the respective cell concentrations obtained from the laboratory-based leukocyte differential. Cell concentrations reported by both assays differed significantly (P < 0.05) over time, indicating shifts from healthy to viral and bacterial disease states. Lymphocyte concentrations, lymphocyte/neutrophil ratios obtained from both assays, and band neutrophil concentrations from the laboratory-based assay were significantly associated (P < 0.05) with lung consolidation, enhancing assessments of disease severity. The PCLD may be a useful alternative to assess BRD progression when laboratory-based leukocyte differentials are impractical.
RESUMEN
Background: There is potentially considerable variation in the nature and duration of the care provided to hospitalised patients during an infectious disease epidemic or pandemic. Improvements in care and clinician confidence may shorten the time spent as an inpatient, or the need for admission to an intensive care unit (ICU) or high dependency unit (HDU). On the other hand, limited resources at times of high demand may lead to rationing. Nevertheless, these variables may be used as static proxies for disease severity, as outcome measures for trials, and to inform planning and logistics. Methods: We investigate these time trends in an extremely large international cohort of 142,540 patients hospitalised with COVID-19. Investigated are: time from symptom onset to hospital admission, probability of ICU/HDU admission, time from hospital admission to ICU/HDU admission, hospital case fatality ratio (hCFR) and total length of hospital stay. Results: Time from onset to admission showed a rapid decline during the first months of the pandemic followed by peaks during August/September and December 2020. ICU/HDU admission was more frequent from June to August. The hCFR was lowest from June to August. Raw numbers for overall hospital stay showed little variation, but there is clear decline in time to discharge for ICU/HDU survivors. Conclusions: Our results establish that variables of these kinds have limitations when used as outcome measures in a rapidly evolving situation. Funding: This work was supported by the UK Foreign, Commonwealth and Development Office and Wellcome [215091/Z/18/Z] and the Bill & Melinda Gates Foundation [OPP1209135]. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Asunto(s)
Hospitalización/estadística & datos numéricos , Evaluación de Resultado en la Atención de Salud/estadística & datos numéricos , SARS-CoV-2/patogenicidad , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/terapia , Niño , Preescolar , Femenino , Humanos , Lactante , Unidades de Cuidados Intensivos/estadística & datos numéricos , Tiempo de Internación/estadística & datos numéricos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Adulto JovenRESUMEN
Bovine brucellosis has been under eradication in Uruguay since 1998. The eradication program includes, among other interventions, individual sera sampling of beef animals at slaughter, and annual serum testing of all dairy cows-accounting for two million samples annually. At a herd prevalence of 0.8%, a pooled-sera sample approach could reduce the economic burden of the surveillance system by reducing the testing and operational costs. Our objective was to evaluate the analytic sensitivity of an indirect ELISA test for Brucella abortus in serum pools. Sixty-two Brucella abortus-positive bovine sera samples (based upon rose bengal and fluorescent polarization assay) were used as the positive control samples. Rose bengal-negative sera from negative farms were used to dilute the positive samples to the desired concentrations. Positive samples were diluted by using 1 ml of positive sera and 1 ml of negative sera (1/2 dilution) up to 1/1,024. Data were analyzed using generalized linear mixed models with a binary outcome (positive or negative), dilution number as a fixed effect, and a random effect for sample ID. Analytic sensitivity was 99.0% [95% confidence interval (CI): 96.3-99.7], 98.3% (95% CI: 93.1-99.6), 97.3% (95% CI: 87.4-99.4) for dilutions 1/2, 1/4, and 1/8, respectively. The analytical sensitivity, however, decreased when diluted to greater proportions. Given the current herd prevalence in Uruguay, it seems plausible that the use of a pooled sample approach could be adopted by policymakers to reduce the cost of the surveillance program and increase the number of samples being tested.
RESUMEN
One Health disease-control programs are believed to be most effective when implemented within the population transmitting the disease. The World Health Organization (WHO) and partners have targeted the elimination of dog-mediated human rabies by 2030 primarily through mass dog vaccination. Mass vaccination, however, has been constrained by financial resource limitations. The current owner-charged dog vaccination strategy, used in most resource-limited countries like Ethiopia, has not reached the minimum coverage required to build population immunity. Dog vaccination is non-existing in most rural areas of Ethiopia, and coverage is <20% in urban areas. Although the health and economic benefits of rabies elimination outweigh the costs, the direct beneficiaries (public in general) and those who bear the costs (dog owners) are not necessarily the same. In this perspective paper, we aggregate evidence on the socioeconomic burden of rabies in Ethiopia as well as the implications for potential opportunities to control the disease and possibilities to obtain the required funding sources for evidence-based interventions in the control of rabies in Ethiopia.
RESUMEN
The objective of this study was to evaluate the diagnostic performance of chute-side diagnostic methods for detecting physiological and pathological changes as indicators of early bovine respiratory disease (BRD) in calves experimentally inoculated with infectious bovine rhinotracheitis virus (IBR) and Mannheimia haemolytica (Mh). A challenge study was performed over 14 d in 30 Holstein steers [average weight (±SEM) = 211 kilograms (kg) ± 2.4 kg] inoculated on day 0 with IBR and on day 6 with Mh. Diagnostic methods included clinical illness scores (CIS), lung auscultation using a computer-aided stethoscope (CAS), rectal temperature, facial thermography, pulse oximetry, and bilateral thoracic ultrasonography. Animals were randomized into 1 of 5 necropsy days (days 6, 7, 9, 11, and 13) when the percentage of lung consolidation was estimated. The effect of study day on the results of the diagnostic methods and associations between each diagnostic method's values with lung consolidation measured at necropsy were determined with mixed models. Values for all diagnostic methods differed significantly (P < 0.01) by day. During the IBR phase (days 0 to 6) calves had "normal" to "moderate" CIS, whereas during the Mh phase (days 6.5 to 13) scores were predominantly "severe" to "moribund." Similarly, CAS scores were "normal" and "mild acute" during the IBR phase and "mild acute" to "moderate acute" after the Mh challenge. Oxygen saturation did not differ significantly between days 0, 1, 2, 4, and 6; however, significantly decreased 12 h after inoculation with Mh (P < 0.05). Mean lung consolidation between animal's right and left side recorded by ultrasound was 0.13% (±0.07) before the inoculation with Mh. However, during the Mh phase, mean consolidation increased significantly over time (P < 0.05). The percentage of lung consolidation at necropsy ranged from 1.7% (±0.82) on day 6 to 55.4% (±7.49) on day 10. Clinical illness scores, rectal temperature, facial thermography, oxygen saturation, and ultrasonography were significantly associated (P < 0.05) with lung consolidation at necropsy. In addition, there was a significant trend (P = 0.07) between CAS and lung consolidation scores at necropsy. These chute-side diagnostic methods are useful for detecting disease progression on animals with early stages of BRD.