RESUMEN
BACKGROUND: Irrigation of olives increases fruit and oil yields. Due to scarcity of freshwater, low-quality water including recycled wastewater (RWW) is utilized in orchards. Here, effects of irrigation with RWW and of fertilization on the composition and quality of olive oil were studied. RESULTS: Long-term RWW irrigation of 'Barnea' and 'Leccino' olive had no significant negative effects on either oil composition or quality parameters, including free fatty acids (FFAs), peroxide value (PV), total phenolics content (TPC), fatty acid profiles and organoleptic characteristics. The average FFA contents for both cultivars were less than 0.8% during most of the experimental period, except the seasons 2009 and 2012-2013 for Barnea where the values were raised up to 1.4%. The measured PV levels were less than 9 and 5 mmol O2 kg-1 oil for Barnea and Leccino, respectively. In the last season of the experiment for each cultivar, higher TPC were observed in oils obtained from RWW irrigation with reduced fertilization (Re-) as compared to the treatments with the recommended fertilization [freshwater irrigation (Fr) and RWW irrigation (Re+) with standard dose of fertilizers], where the TPC increment exceeded 70% in Barnea and 25% in Leccino. The treatments had only minor effects on the fatty acid profile, reflected in slightly altered levels of C18:2 and C18:3 fatty acids. CONCLUSION: The use of RWW, combined with the consideration of nutrients arriving with such water to provide appropriate fertilization, was found suitable for olive irrigation to ensure optimal yields while preserving oil quality. © 2019 Society of Chemical Industry.
Asunto(s)
Riego Agrícola/métodos , Olea/química , Aceite de Oliva/química , Aguas Residuales/análisis , Riego Agrícola/instrumentación , Ácidos Grasos/química , Frutas/química , Frutas/crecimiento & desarrollo , Olea/crecimiento & desarrollo , Fenoles/química , Control de Calidad , ReciclajeRESUMEN
Alkaloids play an essential role in protecting plants against herbivores. Humans can also benefit from the pharmacological effects of these compounds. Plants produce an immense variety of structurally different alkaloids, including quinolizidine alkaloids, a group of bi-, tri-, and tetracyclic compounds produced by Lupinus species. Various lupin species produce different alkaloid profiles. To study the composition of quinolizidine alkaloids in lupin seeds, we collected 31 populations of two wild species native to Israel, L. pilosus and L. palaestinus, and analyzed their quinolizidine alkaloid contents. Our goal was to study the alkaloid profiles of these two wild species to better understand the challenges and prospective uses of wild lupins. We compared their profiles with those of other commercial and wild lupin species. To this end, a straightforward method for extracting alkaloids from seeds and determining the quinolizidine alkaloid profile by LC-MS/MS was developed and validated in-house. For the quantification of quinolizidine alkaloids, 15 analytical reference standards were used. We used GC-MS to verify and cross-reference the identity of certain alkaloids for which no analytical standards were available. The results enabled further exploration of quinolizidine alkaloid biosynthesis. We reviewed and re-analyzed the suggested quinolizidine alkaloid biosynthesis pathway, including the relationship between the amino acid precursor l-lysine and the different quinolizidine alkaloids occurring in seeds of lupin species. Revealing alkaloid compositions and highlighting some aspects of their formation pathway are important steps in evaluating the use of wild lupins as a novel legume crop.
Asunto(s)
Lupinus , Alcaloides de Quinolizidina , Humanos , Cromatografía Liquida , Espectrometría de Masas en Tándem , SemillasRESUMEN
Legumes and nuts are components of high importance in the diet of many countries, mainly those in the Mediterranean region. They are also very versatile and culturally diverse foods found all over the world, acting as a basic protein source in certain countries. Their genetic diversity is needed to sustain the food supply and security for humans and livestock, especially because of the current loss of habitats, species, and genetic diversity worldwide, but also because of the ever present need to feed the increasing human population. Even though both legumes and nuts are considered as high-protein food and environmentally friendly crops, developed countries have lower consumption rates when compared to Asia or Africa. With a view to increasing the consumption of legumes and nuts, the objective of this review is to present the advantages on the use of autochthonous varieties from different countries around the world, thus providing a boost to the local market in the area. The consumption of these varieties could be helped by their use in ready-to-eat foods (RTE), which are now on the rise thanks to today's fast-paced lifestyles and the search for more nutritious and sustainable foods. The versatility of legumes and nuts covers a wide range of possibilities through their use in plant-based dairy analogues, providing alternative-protein and maximal amounts of nutrients and bioactive compounds, potential plant-based flours for bakery and pasta, and added-value traditional RTE meals. For this reason, information about legume and nut nutrition could possibly increase its acceptance with consumers.
RESUMEN
Inhibition of cytochrome P450 3A4 (CYP3A4), the major drug metabolizing enzyme, by dietary compounds has recently attracted increased attention. Evaluating the potency of the many known inhibitory compounds is a tedious and time consuming task, yet it can be achieved using computing tools. Here, CDOCKER and Glide served to design model inhibitors in order to characterize molecular features of an inhibitor. Assessing nitro-stilbenoids, both approaches suggested nitrostilbene to be a weaker inhibitor of CYP3A4 than resveratrol, and stronger than dimethoxy-nitrostilbene. Nitrostilbene and resveratrol, but not dimethoxy-nitrostilbene, engage electrostatic interactions in the enzyme cavity, and with the haem. In vitro assessment of the inhibitory capacity supported the in silico predictions, suggesting that evaluating the electrostatic interactions of a compound with the prosthetic group allows the prediction of inhibitory potency. Since both programs yielded related results, it is suggested that for CYP3A4, computing tools may allow rapid identification of potent dietary inhibitors.
Asunto(s)
Citocromo P-450 CYP3A/metabolismo , Inhibidores del Citocromo P-450 CYP3A , Humanos , Microsomas Hepáticos , EstilbenosRESUMEN
Many dietary compounds, including resveratrol, are potent inhibitors of CYP3A4. Here we examined the potential to predict inhibition capacity of dietary polyphenolics using an in silico and in vitro approaches and synthetic model compounds. Mono, di, and tri-acetoxy resveratrol were synthesized, a cell line of human intestine origin and microsomes from rat liver served to determine their in vitro inhibition of CYP3A4, and compared to that of resveratrol. Docking simulation served to predict the affinity of the synthetic model compounds to the enzyme. Modelling of the enzyme's binding site revealed three types of interaction: hydrophobic, electrostatic and H-bonding. The simulation revealed that each of the examined acetylations of resveratrol led to the loss of important interactions of all types. Tri-acetoxy resveratrol was the weakest inhibitor in vitro despite being the more lipophilic and having the highest affinity for the binding site. The simulation demonstrated exclusion of all interactions between tri-acetoxy resveratrol and the heme due to distal binding, highlighting the complexity of the CYP3A4 binding site, which may allow simultaneous accommodation of two molecules. Finally, the use of computational modelling may serve as a quick predictive tool to identify potential harmful interactions between dietary compounds and prescribed drugs.
Asunto(s)
Inhibidores del Citocromo P-450 CYP3A/farmacología , Modelos Químicos , Estilbenos/química , Animales , Sitios de Unión , Línea Celular , Simulación por Computador , Citocromo P-450 CYP3A/metabolismo , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Técnicas In Vitro , Microsomas Hepáticos/enzimología , Microsomas Hepáticos/metabolismo , Simulación del Acoplamiento Molecular , Ratas , Resveratrol , Electricidad Estática , Estilbenos/metabolismo , Estilbenos/farmacología , Testosterona/metabolismoRESUMEN
The human cytochrome P450 enzymes (P450s) catalyze oxidative reactions of a broad spectrum of substrates and play a critical role in the metabolism of xenobiotics, such as drugs and dietary compounds. CYP3A4 is known to be the main enzyme involved in the metabolism of drugs and most other xenobiotics. Dietary compounds, of which polyphenolics are the most studied, have been shown to interact with CYP3A4 and alter its expression and activity. Traditionally, the liver was considered the prime site of CYP3A-mediated first-pass metabolic extraction, but in vitro and in vivo studies now suggest that the small intestine can be of equal or even greater importance for the metabolism of polyphenolics and drugs. Recent studies have pointed to the role of gut microbiota in the metabolic fate of polyphenolics in human, suggesting their involvement in the complex interactions between dietary polyphenols and CYP3A4. Last but not least, all the above suggests that coadministration of drugs and foods that are rich in polyphenols is expected to stimulate undesirable clinical consequences. This review focuses on interactions between dietary polyphenols and CYP3A4 as they relate to structural considerations, food-drug interactions, and potential negative consequences of interactions between CYP3A4 and polyphenols.
Asunto(s)
Citocromo P-450 CYP3A/metabolismo , Polifenoles/metabolismo , Flavonoides/química , Flavonoides/metabolismo , Humanos , Hidroxibenzoatos/química , Hidroxibenzoatos/metabolismo , Polifenoles/química , Estilbenos/química , Estilbenos/metabolismo , Relación Estructura-ActividadRESUMEN
CYP3A4 is recognized as the main enzyme involved in the metabolism of drugs and xenobiotics in the human body and its inhibition may lead to undesirable consequences. Stilbenes, including resveratrol, belong to a group of dietary health-promoting compounds that also act as inhibitors of CYP3A4. The aim of this study was to examine the use of computer modeling of enzyme-ligand interactions to analyze and predict the inhibition of structurally related compounds. To this end, an aldehyde group was attached to resveratrol and the interactions of CYP3A4 with resveratrol, its aldehyde analogue (RA) and a known synthetic inhibitor were studied and compared in two biological models. Specifically, the metabolism of testosterone was examined in a human intestine cell line (Caco-2/TC7) and in rat liver microsomes (RLM). The results demonstrated a weak inhibitory effect of RA on CYP3A4, as compared to resveratrol itself, in both biological models. Human CYP3A4 was more susceptible to inhibition than the commonly used model isozyme from rat. Modeling of the binding site of CYP3A4 revealed a combination of three types of interactions: hydrophobic interactions, electrostatic interactions and hydrogen bonds. A docking simulation revealed that the RA lacked an important binding feature, as compared to resveratrol, and that that difference may be responsible for its lower level of affinity for CYP3A4. Software analysis of binding affinity may serve as a predictive tool for designing new therapeutic compounds in terms of inhibition of CYP3A4 and help to reveal the biochemical nature of the interactions of dietary compounds, herbal compounds and drugs whose metabolism is mediated by this enzyme.
Asunto(s)
Biología Computacional/métodos , Inhibidores del Citocromo P-450 CYP3A/farmacología , Citocromo P-450 CYP3A/química , Microsomas Hepáticos/efectos de los fármacos , Estilbenos/farmacología , Testosterona/metabolismo , Animales , Células CACO-2 , Supervivencia Celular/efectos de los fármacos , Citocromo P-450 CYP3A/metabolismo , Humanos , Técnicas In Vitro , Masculino , Microsomas Hepáticos/enzimología , Simulación del Acoplamiento Molecular , Ratas , Ratas Sprague-Dawley , ResveratrolRESUMEN
The influence of macronutrient status on olive oil properties was studied for three years. Data were analyzed by a multivariate model considering N, P, K, and fruiting year as explanatory factors. Oil quality parameters were primarily associated with N concentration in leaves and fruits which increased with N in irrigation solution. The effect of P on oil quality was mainly indirect since increased P availability increased N accumulation. The potassium level had negligible effects. The oil phenolic content decreased linearly as a function of increased leaf N, indicating protein-phenol competition in leaves. The overall saturation level of the fatty acids decreased with fruit N, resulting in increased polyunsaturated fatty acids. Free fatty acids increased with increased levels of fruit N. High fruit load tended to reduce fruit N and subsequently improve oil quality. The effect of N on oil properties depended solely on its concentration in leaves or fruits, regardless of the cause.
Asunto(s)
Calidad de los Alimentos , Nitrógeno/metabolismo , Olea/fisiología , Aceites de Plantas/química , Riego Agrícola , Ácidos Grasos Insaturados/análisis , Ácidos Grasos Insaturados/metabolismo , Frutas/química , Frutas/metabolismo , Análisis Multivariante , Olea/química , Aceite de Oliva , Fenoles/análisis , Fósforo/metabolismo , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Potasio/metabolismoRESUMEN
Five rates of water application were applied in a 4 year study on olive (Olea europaea) varieties 'Barnea' and 'Souri'. Increased irrigation lead to increased tree-scale oil yields, lower polyphenol content, and, frequently, higher oil acidity. These effects were predominant in "off" years. The fatty acid profile was influenced primarily by bearing level and variety and secondarily by irrigation rate. The saturated to unsaturated fatty acid ratio was higher in "off" than in "on" years, and the monounsaturated fatty acid to polyunsaturated fatty acid ratio was higher in "on" years as a result of the fact that oleic and stearic acids were higher in "on" years, while palmitic, palmitoleic, and linoleic acids were greater in "off" years. Squalene was higher in 'Souri' than in 'Barnea' oils, was not affected by bearing cycle, and was consistently lower in oil from trees receiving the lowest irrigation level.