Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nano Lett ; 23(4): 1229-1235, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36720048

RESUMEN

Symmetry breaking in topological matter has become in recent years a key concept in condensed matter physics to unveil novel electronic states. In this work, we predict that broken inversion symmetry and strong spin-orbit coupling in trigonal PtBi2 lead to a type-I Weyl semimetal band structure. Transport measurements show an unusually robust low dimensional superconductivity in thin exfoliated flakes up to 126 nm in thickness (with Tc ∼ 275-400 mK), which constitutes the first report and study of unambiguous superconductivity in a type-I Weyl semimetal. Remarkably, a Berezinskii-Kosterlitz-Thouless transition with TBKT ∼ 310 mK is revealed in up to 60 nm thick flakes, which is nearly an order of magnitude thicker than the rare examples of two-dimensional superconductors exhibiting such a transition. This makes PtBi2 an ideal platform to study low dimensional and unconventional superconductivity in topological semimetals.

2.
Phys Chem Chem Phys ; 21(28): 15422-15430, 2019 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-31287471

RESUMEN

We investigate water desorption from hydrophobic surfaces using two curved Ag single crystals centered at (111) and (001) apices. On these types of crystals the step density gradually increases along the curvature, allowing us to probe large ranges of surface structures in between the (001), (111) and (110) planes. Subtle differences in desorption of submonolayer water coverages point toward structure dependencies in water cluster nucleation. The B-type step on hydrophobic Ag binds water structures more strongly than adjacent (111) planes, leading to preferred desorption from steps. This driving force is smaller for A-type steps on (111) terraces. The A'-type step flanked by (001) terraces shows no indication of preferred desorption from steps. Extrapolation to the (311) surface, not contained within either curved surface, demonstrates that both A- and A'-type steps can be regarded chemically identical for water desorption. The different trends in desorption temperature on the two crystals can thus be attributed to stronger water adsorption at (001) planes than at (111) planes and identical to adsorption at the step. These results show that our approach to studying the structure dependence of water desorption is sensitive to variations in desorption energy smaller than 'chemical accuracy', i.e. 1 kcal mol-1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA