Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell ; 177(2): 286-298.e15, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30929903

RESUMEN

The 26S proteasome is the principal macromolecular machine responsible for protein degradation in eukaryotes. However, little is known about the detailed kinetics and coordination of the underlying substrate-processing steps of the proteasome, and their correlation with observed conformational states. Here, we used reconstituted 26S proteasomes with unnatural amino-acid-attached fluorophores in a series of FRET- and anisotropy-based assays to probe substrate-proteasome interactions, the individual steps of the processing pathway, and the conformational state of the proteasome itself. We develop a complete kinetic picture of proteasomal degradation, which reveals that the engagement steps prior to substrate commitment are fast relative to subsequent deubiquitination, translocation, and unfolding. Furthermore, we find that non-ideal substrates are rapidly rejected by the proteasome, which thus employs a kinetic proofreading mechanism to ensure degradation fidelity and substrate prioritization.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/fisiología , Anisotropía , Sitios de Unión/fisiología , Activación Enzimática , Cinética , Modelos Moleculares , Unión Proteica , Conformación Proteica , Procesamiento Proteico-Postraduccional/fisiología , Proteolisis , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato/fisiología , Ubiquitina/metabolismo
2.
Nat Chem Biol ; 19(1): 55-63, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36577875

RESUMEN

Engineered destruction of target proteins by recruitment to the cell's degradation machinery has emerged as a promising strategy in drug discovery. The majority of molecules that facilitate targeted degradation do so via a select number of ubiquitin ligases, restricting this therapeutic approach to tissue types that express the requisite ligase. Here, we describe a new strategy of targeted protein degradation through direct substrate recruitment to the 26S proteasome. The proteolytic complex is essential and abundantly expressed in all cells; however, proteasomal ligands remain scarce. We identify potent peptidic macrocycles that bind directly to the 26S proteasome subunit PSMD2, with a 2.5-Å-resolution cryo-electron microscopy complex structure revealing a binding site near the 26S pore. Conjugation of this macrocycle to a potent BRD4 ligand enabled generation of chimeric molecules that effectively degrade BRD4 in cells, thus demonstrating that degradation via direct proteasomal recruitment is a viable strategy for targeted protein degradation.


Asunto(s)
Proteínas Nucleares , Factores de Transcripción , Proteínas Nucleares/metabolismo , Microscopía por Crioelectrón , Factores de Transcripción/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
3.
Nature ; 482(7384): 186-91, 2012 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-22237024

RESUMEN

The proteasome is the major ATP-dependent protease in eukaryotic cells, but limited structural information restricts a mechanistic understanding of its activities. The proteasome regulatory particle, consisting of the lid and base subcomplexes, recognizes and processes polyubiquitinated substrates. Here we used electron microscopy and a new heterologous expression system for the lid to delineate the complete subunit architecture of the regulatory particle from yeast. Our studies reveal the spatial arrangement of ubiquitin receptors, deubiquitinating enzymes and the protein unfolding machinery at subnanometre resolution, outlining the substrate's path to degradation. Unexpectedly, the ATPase subunits within the base unfoldase are arranged in a spiral staircase, providing insight into potential mechanisms for substrate translocation through the central pore. Large conformational rearrangements of the lid upon holoenzyme formation suggest allosteric regulation of deubiquitination. We provide a structural basis for the ability of the proteasome to degrade a diverse set of substrates and thus regulate vital cellular processes.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Saccharomyces cerevisiae/enzimología , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Sitios de Unión , Endopeptidasas/metabolismo , Escherichia coli/metabolismo , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/metabolismo , Modelos Moleculares , Complejo de la Endopetidasa Proteasomal/genética , Unión Proteica , Conformación Proteica , Subunidades de Proteína/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo
4.
Nat Commun ; 15(1): 6059, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39025847

RESUMEN

Synthetic lethality provides an attractive strategy for developing targeted cancer therapies. For example, cancer cells with high levels of microsatellite instability (MSI-H) are dependent on the Werner (WRN) helicase for survival. However, the mechanisms that regulate WRN spatiotemporal dynamics remain poorly understood. Here, we used single-molecule tracking (SMT) in combination with a WRN inhibitor to examine WRN dynamics within the nuclei of living cancer cells. WRN inhibition traps the helicase on chromatin, requiring p97/VCP for extraction and proteasomal degradation in a MSI-H dependent manner. Using a phenotypic screen, we identify the PIAS4-RNF4 axis as the pathway responsible for WRN degradation. Finally, we show that co-inhibition of WRN and SUMOylation has an additive toxic effect in MSI-H cells and confirm the in vivo activity of WRN inhibition using an MSI-H mouse xenograft model. This work elucidates a regulatory mechanism for WRN that may facilitate identification of new therapeutic modalities, and highlights the use of SMT as a tool for drug discovery and mechanism-of-action studies.


Asunto(s)
Cromatina , Proteínas Inhibidoras de STAT Activados , Proteína que Contiene Valosina , Helicasa del Síndrome de Werner , Helicasa del Síndrome de Werner/metabolismo , Helicasa del Síndrome de Werner/genética , Humanos , Animales , Cromatina/metabolismo , Proteína que Contiene Valosina/metabolismo , Proteína que Contiene Valosina/genética , Proteínas Inhibidoras de STAT Activados/metabolismo , Proteínas Inhibidoras de STAT Activados/genética , Ratones , Línea Celular Tumoral , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Inestabilidad de Microsatélites , Proteolisis/efectos de los fármacos , Sumoilación/efectos de los fármacos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Femenino
5.
ACS Chem Biol ; 18(6): 1425-1434, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37220419

RESUMEN

In the past decade, macrocyclic peptides gained increasing interest as a new therapeutic modality to tackle intracellular and extracellular therapeutic targets that had been previously classified as "undruggable". Several technological advances have made discovering macrocyclic peptides against these targets possible: 1) the inclusion of noncanonical amino acids (NCAAs) into mRNA display, 2) increased availability of next generation sequencing (NGS), and 3) improvements in rapid peptide synthesis platforms. This type of directed-evolution based screening can produce large numbers of potential hit sequences given that DNA sequencing is the functional output of this platform. The current standard for selecting hit peptides from these selections for downstream follow-up relies on the frequency counting and sorting of unique peptide sequences which can result in the generation of false negatives due to technical reasons including low translation efficiency or other experimental factors. To overcome our inability to detect weakly enriched peptide sequences among our large data sets, we wanted to develop a clustering method that would enable the identification of peptide families. Unfortunately, utilizing traditional clustering algorithms, such as ClustalW, is not possible for this technology due to the incorporation of NCAAs in these libraries. Therefore, we developed a new atomistic clustering method with a Pairwise Aligned Peptide (PAP) chemical similarity metric to perform sequence alignments and identify macrocyclic peptide families. With this method, low enriched peptides, including isolated sequences (singletons), can now be clustered into families providing a comprehensive analysis of NGS data resulting from macrocycle discovery selections. Additionally, upon identification of a hit peptide with the desired activity, this clustering algorithm can be used to identify derivatives from the initial data set for structure-activity relationship (SAR) analysis without requiring additional selection experiments.


Asunto(s)
Aminoácidos , Quimioinformática , Humanos , Aminoácidos/genética , Péptidos/química , Análisis por Conglomerados , Biología Computacional , Biblioteca de Péptidos
6.
ACS Chem Biol ; 15(6): 1392-1400, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32302100

RESUMEN

Ubiquitin specific protease 7 (USP7) regulates the protein stability of key cellular regulators in pathways ranging from apoptosis to neuronal development, making it a promising therapeutic target. Here we used an engineered, activated variant of the USP7 catalytic domain to perform structure-activity studies of electrophilic peptidomimetic inhibitors. Employing this USP7 variant, we found that inhibitors with a cyanopyrrolidine warhead unexpectedly promoted a ß-elimination reaction of the initial covalent adducts, thereby converting the active-site cysteine residue to dehydroalanine. We determined that this phenomenon is specific for the USP7 catalytic cysteine and that structural features of the inhibitor and protein microenvironment impact elimination rates. Using comprehensive docking studies, we propose that the characteristic conformational dynamics of USP7 allow access to conformations that promote the ligand-induced elimination. Unlike in conventional reversible-covalent inhibition, the compounds described here irreversibly destroy a catalytic residue while simultaneously converting the inhibitor to a nonelectrophilic byproduct. Accordingly, this unexpected finding expands the scope of covalent inhibitor modalities and offers intriguing insights into enzyme-inhibitor dynamics.


Asunto(s)
Dominio Catalítico/efectos de los fármacos , Pirrolidinas/química , Pirrolidinas/farmacología , Peptidasa Específica de Ubiquitina 7/antagonistas & inhibidores , Cisteína/química , Cisteína/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Simulación del Acoplamiento Molecular , Peptidomiméticos/química , Peptidomiméticos/farmacología , Peptidasa Específica de Ubiquitina 7/química , Peptidasa Específica de Ubiquitina 7/metabolismo
7.
Structure ; 26(1): 72-84.e7, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29249604

RESUMEN

Ubiquitin-specific protease 7 (USP7) deubiquitinase activity is controlled by a number of regulatory factors, including stimulation by intramolecular accessory domains. Alone, the USP7 catalytic domain (USP7cd) shows limited activity and apo USP7cd crystal structures reveal a disrupted catalytic triad. By contrast, ubiquitin-conjugated USP7cd structures demonstrate the canonical cysteine protease active-site geometry; however, the structural features of the USP7cd that stabilize the inactive conformation and the mechanism of transition between inactive and active states remain unclear. Here we use comparative structural analyses, molecular dynamics simulations, and in silico sequence re-engineering via directed sampling by RosettaDesign to identify key molecular determinants of USP7cd activation and successfully engineer USP7cd for improved activity. Full kinetic analysis and multiple X-ray crystal structures of our designs indicate that electrostatic interactions in the distal "switching loop" region and local packing in the hydrophobic core mediate subtle but significant conformational changes that modulate USP7cd activation.


Asunto(s)
Inhibidores Enzimáticos/química , Mutación , Peptidomiméticos/química , Peptidasa Específica de Ubiquitina 7/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , Activación Enzimática , Inhibidores Enzimáticos/síntesis química , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Simulación de Dinámica Molecular , Peptidomiméticos/síntesis química , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Electricidad Estática , Especificidad por Sustrato , Termodinámica , Peptidasa Específica de Ubiquitina 7/antagonistas & inhibidores , Peptidasa Específica de Ubiquitina 7/genética , Peptidasa Específica de Ubiquitina 7/metabolismo
8.
Nat Struct Mol Biol ; 22(9): 712-9, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26301997

RESUMEN

Substrates are targeted for proteasomal degradation through the attachment of ubiquitin chains that need to be removed by proteasomal deubiquitinases before substrate processing. In budding yeast, the deubiquitinase Ubp6 trims ubiquitin chains and affects substrate processing by the proteasome, but the underlying mechanisms and the location of Ubp6 within the holoenzyme have been elusive. Here we show that Ubp6 activity strongly responds to interactions with the base ATPase and the conformational state of the proteasome. Electron microscopy analyses reveal that ubiquitin-bound Ubp6 contacts the N ring and AAA+ ring of the ATPase hexamer and is in proximity to the deubiquitinase Rpn11. Ubiquitin-bound Ubp6 inhibits substrate deubiquitination by Rpn11, stabilizes the substrate-engaged conformation of the proteasome and allosterically interferes with the engagement of a subsequent substrate. Ubp6 may thus act as a ubiquitin-dependent 'timer' to coordinate individual processing steps at the proteasome and modulate substrate degradation.


Asunto(s)
Endopeptidasas/química , Endopeptidasas/metabolismo , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Sustancias Macromoleculares/ultraestructura , Microscopía Electrónica , Complejos Multienzimáticos/ultraestructura
9.
J Pharm Biomed Anal ; 52(3): 416-9, 2010 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-19608372

RESUMEN

A cellular membrane affinity chromatography (CMAC) column has been created using cellular membrane fragments from a 1321N1 cell line stably transfected with the P2Y(1) receptor. The CMAC(1321N1(P2Y1)) column contained functional P2Y(1) and histamine 1 receptors, which independently bound receptor-specific ligands. The data obtained with the CMAC(1321N1(P2Y1)) column demonstrate that multiple-G-protein coupled receptor (GPCR) columns can be developed and used to probe interactions with the immobilized receptors and that endogenously expressed GPCRs can be used to create CMAC columns. The results also establish that the histamine 1 receptor can be immobilized with retention of ligand-specific binding.


Asunto(s)
Membrana Celular/metabolismo , Cromatografía de Afinidad/instrumentación , Receptores Acoplados a Proteínas G/metabolismo , Receptores Histamínicos/metabolismo , Receptores Purinérgicos P2/metabolismo , Astrocitoma/patología , Línea Celular Tumoral , Humanos , Cinética , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA