Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 22(19): 7804-7810, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36129969

RESUMEN

The physics of phase transitions in two-dimensional (2D) systems underpins research in diverse fields including statistical mechanics, nanomagnetism, and soft condensed matter. However, many aspects of 2D phase transitions are still not well understood, including the effects of interparticle potential, polydispersity, and particle shape. Magnetic skyrmions are chiral spin-structure quasi-particles that form two-dimensional lattices. Here, we show, by real-space imaging using in situ cryo-Lorentz transmission electron microscopy coupled with machine learning image analysis, the ordering behavior of Néel skyrmion lattices in van der Waals Fe3GeTe2. We demonstrate a distinct change in the skyrmion size distribution during field-cooling, which leads to a loss of lattice order and an evolution of the skyrmion liquid phase. Remarkably, the lattice order is restored during field heating and demonstrates a thermal hysteresis. This behavior is explained by the skyrmion energy landscape and demonstrates the potential to control the lattice order in 2D phase transitions.

2.
Nano Lett ; 20(12): 8446-8452, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33166150

RESUMEN

Two-dimensional nanoelectronics, plasmonics, and emergent phases require clean and local charge control, calling for layered, crystalline acceptors or donors. Our Raman, photovoltage, and electrical conductance measurements combined with ab initio calculations establish the large work function and narrow bands of α-RuCl3 enable modulation doping of exfoliated single and bilayer graphene, chemical vapor deposition grown graphene and WSe2, and molecular beam epitaxy grown EuS. We further demonstrate proof of principle photovoltage devices, control via twist angle, and charge transfer through hexagonal boron nitride. Short-ranged lateral doping (≤65 nm) and high homogeneity are achieved in proximate materials with a single layer of α-RuCl3. This leads to the best-reported monolayer graphene mobilities (4900 cm2/(V s)) at these high hole densities (3 × 1013 cm-2) and yields larger charge transfer to bilayer graphene (6 × 1013 cm-2).

3.
Nanoscale ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39129678

RESUMEN

Over the past two decades, significant progress in two-dimensional (2D) materials has invigorated research in condensed matter and material physics in low dimensions. While traditionally studied in three-dimensional systems, magnetism has now been extended to the 2D realm. Recent breakthroughs in 2D magnetism have attracted substantial interest from the scientific community, owing to the stable magnetic order achievable in atomically thin layers of the van der Waals (vdW)-type layered magnetic materials. These advances offer an exciting platform for investigating related phenomena in low dimensions and hold promise for spintronic applications. Consequently, vdW magnetic materials with tunable magnetism have attracted significant attention. Specifically, antiferromagnetic metal thiophosphates MPX3 (M = transition metal, P = phosphorus, X = chalcogen) have been investigated extensively. These materials exhibit long-range magnetic order spanning from bulk to the 2D limit. The magnetism in MPX3 arises from localized moments associated with transition metal ions, making it tunable via substitutions and intercalations. In this review, we focus on such tuning by providing a comprehensive summary of various metal- and chalcogen-substitution and intercalation studies, along with the mechanism of magnetism modulation, and a perspective on the development of this emergent material family.

4.
J Phys Condens Matter ; 34(43)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-35977536

RESUMEN

Intercalation has become a powerful approach to tune the intrinsic properties and introduce novel phenomena in layered materials. Intercalating van der Waals (vdW) magnetic materials is a promising route to engineer the low-dimensional magnetism. Recently, metal thiophosphates,MPX3, has been widely studied because their magnetic orders are highly tunable and persist down to the two-dimensional limit. In this work, we used electrochemical technique to intercalate Li into NiPS3single crystals and found the emergence of ferrimagnetism at low temperature in Li-intercalated NiPS3. Such tuning of magnetic properties highlights the effectiveness of intercalation, providing a novel strategy to manipulate the magnetism in vdW magnets.

5.
Crystals (Basel) ; 12(11)2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37206882

RESUMEN

The ZrSiS-type materials have gained intensive attentions. The magnetic version of the ZrSiS-type materials, LnSbTe (Ln = Lanthanide), offers great opportunities to explore new quantum states owing to the interplay between magnetism and electronic band topology. Here, we report the growth and characterization of the non-magnetic LaSbSe of this material family. We found the metallic transport, low magnetoresistance and non-compensated charge carriers with relatively low carrier density in LaSbSe. The specific heat measurement has revealed distinct Sommerfeld coefficient and Debye temperature in comparison to LaSbTe. Such addition of a new LnSbSe selenide compound could provide the alternative material choices in addition to LnSbTe telluride materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA