Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurosci ; 43(14): 2597-2614, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36898838

RESUMEN

We previously demonstrated a role of piriform cortex (Pir) in relapse to fentanyl seeking after food choice-induced voluntary abstinence. Here, we used this model to further study the role of Pir and its afferent projections in fentanyl relapse. We trained male and female rats to self-administer palatable food pellets for 6 d (6 h/day) and fentanyl (2.5 µg/kg/infusion, i.v.) for 12 d (6 h/day). We assessed relapse to fentanyl seeking after 12 voluntary abstinence sessions, achieved through a discrete choice procedure between fentanyl and palatable food (20 trials/session). We determined projection-specific activation of Pir afferents during fentanyl relapse with Fos plus the retrograde tracer cholera toxin B (injected into Pir). Fentanyl relapse was associated with increased Fos expression in anterior insular cortex (AI) and prelimbic cortex (PL) neurons projecting to Pir. We next used an anatomical disconnection procedure to determine the causal role of these two projections (AI→Pir and PL→Pir) in fentanyl relapse. Contralateral but not ipsilateral disconnection of AI→Pir projections decreased fentanyl relapse but not reacquisition of fentanyl self-administration. In contrast, contralateral but not ipsilateral disconnection of PL→Pir projections modestly decreased reacquisition but not relapse. Fluorescence-activated cell sorting and quantitative PCR data showed molecular changes within Pir Fos-expressing neurons associated with fentanyl relapse. Finally, we found minimal or no sex differences in fentanyl self-administration, fentanyl versus food choice, and fentanyl relapse. Our results indicate that AI→Pir and PL→Pir projections play dissociable roles in nonreinforced relapse to fentanyl seeking versus reacquisition of fentanyl self-administration after food choice-induced voluntary abstinence.SIGNIFICANCE STATEMENT We previously showed a role of Pir in fentanyl relapse after food choice-induced voluntary abstinence in rats, a procedure mimicking human abstinence or a significant reduction in drug self-administration because of the availability of alternative nondrug rewards. Here, we aimed to further characterize the role of Pir in fentanyl relapse by investigating the role of Pir afferent projections and analyzing molecular changes in relapse-activated Pir neurons. We identified dissociable roles of two Pir afferent projections (AI→Pir and PL→Pir) in relapse to fentanyl seeking versus reacquisition of fentanyl self-administration after voluntary abstinence. We also characterized molecular changes within Pir Fos-expressing neurons associated with fentanyl relapse.


Asunto(s)
Fentanilo , Corteza Piriforme , Humanos , Ratas , Masculino , Femenino , Animales , Ratas Sprague-Dawley , Preferencias Alimentarias , Alimentos , Autoadministración , Extinción Psicológica , Comportamiento de Búsqueda de Drogas/fisiología
2.
J Neurosci ; 43(10): 1692-1713, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36717230

RESUMEN

The brain µ-opioid receptor (MOR) is critical for the analgesic, rewarding, and addictive effects of opioid drugs. However, in rat models of opioid-related behaviors, the circuit mechanisms of MOR-expressing cells are less known because of a lack of genetic tools to selectively manipulate them. We introduce a CRISPR-based Oprm1-Cre knock-in transgenic rat that provides cell type-specific genetic access to MOR-expressing cells. After performing anatomic and behavioral validation experiments, we used the Oprm1-Cre knock-in rats to study the involvement of NAc MOR-expressing cells in heroin self-administration in male and female rats. Using RNAscope, autoradiography, and FISH chain reaction (HCR-FISH), we found no differences in Oprm1 expression in NAc, dorsal striatum, and dorsal hippocampus, or MOR receptor density (except dorsal striatum) or function between Oprm1-Cre knock-in rats and wildtype littermates. HCR-FISH assay showed that iCre is highly coexpressed with Oprm1 (95%-98%). There were no genotype differences in pain responses, morphine analgesia and tolerance, heroin self-administration, and relapse-related behaviors. We used the Cre-dependent vector AAV1-EF1a-Flex-taCasp3-TEVP to lesion NAc MOR-expressing cells. We found that the lesions decreased acquisition of heroin self-administration in male Oprm1-Cre rats and had a stronger inhibitory effect on the effort to self-administer heroin in female Oprm1-Cre rats. The validation of an Oprm1-Cre knock-in rat enables new strategies for understanding the role of MOR-expressing cells in rat models of opioid addiction, pain-related behaviors, and other opioid-mediated functions. Our initial mechanistic study indicates that lesioning NAc MOR-expressing cells had different effects on heroin self-administration in male and female rats.SIGNIFICANCE STATEMENT The brain µ-opioid receptor (MOR) is critical for the analgesic, rewarding, and addictive effects of opioid drugs. However, in rat models of opioid-related behaviors, the circuit mechanisms of MOR-expressing cells are less known because of a lack of genetic tools to selectively manipulate them. We introduce a CRISPR-based Oprm1-Cre knock-in transgenic rat that provides cell type-specific genetic access to brain MOR-expressing cells. After performing anatomical and behavioral validation experiments, we used the Oprm1-Cre knock-in rats to show that lesioning NAc MOR-expressing cells had different effects on heroin self-administration in males and females. The new Oprm1-Cre rats can be used to study the role of brain MOR-expressing cells in animal models of opioid addiction, pain-related behaviors, and other opioid-mediated functions.


Asunto(s)
Dependencia de Heroína , Heroína , Ratas , Masculino , Femenino , Animales , Heroína/farmacología , Analgésicos Opioides/farmacología , Núcleo Accumbens , Receptores Opioides/metabolismo , Ratas Transgénicas , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Dolor/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-39269500

RESUMEN

RATIONALE: The opioid crisis persists despite availability of effective opioid agonist maintenance treatments (methadone and buprenorphine). Thus, there is a need to advance novel medications for the treatment of opioid use and relapse. OBJECTIVES: We recently modeled maintenance treatment in rats and found that chronic delivery of buprenorphine and the mu opioid receptor (MOR) partial agonist TRV130 decreases relapse to oxycodone seeking and taking. In contrast, chronic delivery of the buprenorphine analog BU08028 had mixed effects on different heroin relapse-related measures. Here, we tested the effect of the mixed nociceptin (NOP) receptor/MOR partial agonist AT-201 and the NOP receptor antagonist J-113397 on different heroin relapse-related measures. METHODS: We trained male and female rats to self-administer heroin (6-h/d, 14-d) in context A and then implanted osmotic minipumps containing AT-201 (0, 3.8, or 12 mg/kg/d) or J-113397 (0, 12.6, or 40 mg/kg/d). Next, we tested the effect of chronic delivery of the compounds on (1) incubation of heroin seeking in a non-drug context B, (2) extinction responding reinforced by heroin-associated discrete cues in context B, (3) context A-induced reinstatement of heroin seeking, and (4) reacquisition of heroin self-administration in context A. RESULTS: In females, AT-201 modestly increased reacquisition of heroin self-administration and J-113397 modestly decreased incubation of heroin seeking. The compounds had no effect on the other relapse-related measures in females, and no effect on any of the measures in males. CONCLUSION: The NOP/MOR partial agonist AT-201 and the NOP antagonist J-113397 did not mimic buprenorphine's inhibitory effects on relapse in a rat model of opioid maintenance treatment.

4.
Sci Adv ; 9(2): eadd8687, 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36630511

RESUMEN

High relapse rate is a key feature of opioid addiction. In humans, abstinence is often voluntary due to negative consequences of opioid seeking. To mimic this human condition, we recently introduced a rat model of incubation of oxycodone craving after electric barrier-induced voluntary abstinence. Incubation of drug craving refers to time-dependent increases in drug seeking after cessation of drug self-administration. Here, we used the activity marker Fos, muscimol-baclofen (GABAa + GABAb receptor agonists) global inactivation, Daun02-selective inactivation of putative relapse-associated neuronal ensembles, and fluorescence-activated cell sorting of Fos-positive cells and quantitative polymerase chain reaction to demonstrate a key role of vSub neuronal ensembles in incubation of oxycodone craving after voluntary abstinence, but not homecage forced abstinence. We also used a longitudinal functional magnetic resonance imaging method and showed that functional connectivity changes in vSub-related circuits predict opioid relapse after abstinence induced by adverse consequences of opioid seeking.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA