Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Cell ; 153(2): 480-92, 2013 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-23582333

RESUMEN

To gain insight into the cellular readout of DNA methylation, we established a strategy for systematically profiling the genome-wide distribution of chromatin-interacting factors. This enabled us to create genomic maps for the methyl-CpG-binding domain (MBD) family of proteins, including disease-relevant mutants, deletions, and isoforms. In vivo binding of MBD proteins occurs predominantly as a linear function of local methylation density, requiring functional MBD domains and methyl-CPGs. This interaction directs specificity of MBD proteins to methylated, CpG-dense, and inactive regulatory regions. In contrast, binding to unmethylated sites varies between MBD proteins and is mediated via alternative domains or protein-protein interactions. Such targeting is exemplified by NuRD-complex-mediated tethering of MBD2 to a subset of unmethylated, active regulatory regions. Interestingly, MBD3 also occupies these sites, but like MBD2, binding is independent of the presence of hydroxymethylation. These functional binding maps reveal methylation-dependent and -independent binding modes and revise current models of DNA methylation readout through MBD proteins.


Asunto(s)
Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Secuencia de Aminoácidos , Animales , Biotina/metabolismo , Cromatina/metabolismo , Islas de CpG , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Células Madre Embrionarias , Estudio de Asociación del Genoma Completo , Humanos , Proteína 2 de Unión a Metil-CpG/metabolismo , Ratones , Datos de Secuencia Molecular , Mutación , Estructura Terciaria de Proteína , Alineación de Secuencia
2.
Mol Cell ; 73(4): 670-683.e12, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30639241

RESUMEN

Cellular mechanisms that safeguard genome integrity are often subverted in cancer. To identify cancer-related genome caretakers, we employed a convergent multi-screening strategy coupled to quantitative image-based cytometry and ranked candidate genes according to multivariate readouts reflecting viability, proliferative capacity, replisome integrity, and DNA damage signaling. This unveiled regulators of replication stress resilience, including components of the pre-mRNA cleavage and polyadenylation complex. We show that deregulation of pre-mRNA cleavage impairs replication fork speed and leads to excessive origin activity, rendering cells highly dependent on ATR function. While excessive formation of RNA:DNA hybrids under these conditions was tightly associated with replication-stress-induced DNA damage, inhibition of transcription rescued fork speed, origin activation, and alleviated replication catastrophe. Uncoupling of pre-mRNA cleavage from co-transcriptional processing and export also protected cells from replication-stress-associated DNA damage, suggesting that pre-mRNA cleavage provides a mechanism to efficiently release nascent transcripts and thereby prevent gene gating-associated genomic instability.


Asunto(s)
Daño del ADN , Replicación del ADN , Inestabilidad Genómica , Neoplasias/genética , División del ARN , Precursores del ARN/genética , ARN Mensajero/genética , ARN Neoplásico/genética , Transporte Activo de Núcleo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN de Neoplasias/genética , ADN de Neoplasias/metabolismo , Proteínas de Unión al ADN , Regulación Neoplásica de la Expresión Génica , Células HeLa , Humanos , Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ácidos Nucleicos Heterodúplex/genética , Ácidos Nucleicos Heterodúplex/metabolismo , Poliadenilación , Precursores del ARN/biosíntesis , ARN Mensajero/biosíntesis , ARN Neoplásico/biosíntesis , Proteínas de Unión al ARN
3.
Hum Mol Genet ; 31(3): 386-398, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34494094

RESUMEN

Expanded CAG/CTG repeat disorders affect over 1 in 2500 individuals worldwide. Potential therapeutic avenues include gene silencing and modulation of repeat instability. However, there are major mechanistic gaps in our understanding of these processes, which prevent the rational design of an efficient treatment. To address this, we developed a novel system, ParB/ANCHOR-mediated Inducible Targeting (PInT), in which any protein can be recruited at will to a GFP reporter containing an expanded CAG/CTG repeat. Previous studies have implicated the histone deacetylase HDAC5 and the DNA methyltransferase DNMT1 as modulators of repeat instability via mechanisms that are not fully understood. Using PInT, we found no evidence that HDAC5 or DNMT1 modulate repeat instability upon targeting to the expanded repeat, suggesting that their effect is independent of local chromatin structure. Unexpectedly, we found that expanded CAG/CTG repeats reduce the effectiveness of gene silencing mediated by targeting HDAC5 and DNMT1. The repeat-length effect in gene silencing by HDAC5 was abolished by a small molecule inhibitor of HDAC3. Our results have important implications on the design of epigenome editing approaches for expanded CAG/CTG repeat disorders. PInT is a versatile synthetic system to study the effect of any sequence of interest on epigenome editing.


Asunto(s)
Epigenoma , Expansión de Repetición de Trinucleótido , Silenciador del Gen , Humanos , Repeticiones de Trinucleótidos
4.
EMBO J ; 39(23): e105606, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33433018

RESUMEN

Chromosomes have an intrinsic tendency to segregate into compartments, forming long-distance contacts between loci of similar chromatin states. How genome compartmentalization is regulated remains elusive. Here, comparison of mouse ground-state embryonic stem cells (ESCs) characterized by open and active chromatin, and advanced serum ESCs with a more closed and repressed genome, reveals distinct regulation of their genome organization due to differential dependency on BAZ2A/TIP5, a component of the chromatin remodeling complex NoRC. On ESC chromatin, BAZ2A interacts with SNF2H, DNA topoisomerase 2A (TOP2A) and cohesin. BAZ2A associates with chromatin sub-domains within the active A compartment, which intersect through long-range contacts. We found that ground-state chromatin selectively requires BAZ2A to limit the invasion of active domains into repressive compartments. BAZ2A depletion increases chromatin accessibility at B compartments. Furthermore, BAZ2A regulates H3K27me3 genome occupancy in a TOP2A-dependent manner. Finally, ground-state ESCs require BAZ2A for growth, differentiation, and correct expression of developmental genes. Our results uncover the propensity of open chromatin domains to invade repressive domains, which is counteracted by chromatin remodeling to establish genome partitioning and preserve cell identity.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Genoma , Células Madre Pluripotentes/metabolismo , Adenosina Trifosfatasas/metabolismo , Animales , Proteínas de Ciclo Celular , Diferenciación Celular , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , ADN-Topoisomerasas de Tipo II/metabolismo , Epigenómica , Regulación de la Expresión Génica , Histonas/metabolismo , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Pluripotentes/citología , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Cohesinas
5.
J Cell Sci ; 135(19)2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36052643

RESUMEN

Cell size varies between cell types but is tightly regulated by cell intrinsic and extrinsic mechanisms. Cell size control is important for cell function, and changes in cell size are frequently observed in cancer. Here, we uncover a role for SETD2 in regulating cell size. SETD2 is a lysine methyltransferase and a tumor suppressor protein involved in transcription, RNA processing and DNA repair. At the molecular level, SETD2 is best known for associating with RNA polymerase II through its Set2-Rbp1 interacting (SRI) domain and methylating histone H3 on lysine 36 (H3K36) during transcription. Using multiple independent perturbation strategies, we identify SETD2 as a negative regulator of global protein synthesis rates and cell size. We provide evidence that overexpression of the H3K36 demethylase KDM4A or the oncohistone H3.3K36M also increase cell size. In addition, ectopic overexpression of a decoy SRI domain increased cell size, suggesting that the relevant substrate is engaged by SETD2 via its SRI domain. These data add a central role of SETD2 in regulating cellular physiology and warrant further studies on separating the different functions of SETD2 in cancer development.


Asunto(s)
Histonas , Neoplasias , Tamaño de la Célula , Histona Metiltransferasas/metabolismo , Histonas/metabolismo , Humanos , Histona Demetilasas con Dominio de Jumonji/metabolismo , Lisina , Neoplasias/metabolismo , ARN Polimerasa II/metabolismo , Proteínas Supresoras de Tumor/metabolismo
6.
Mol Cell ; 61(3): 474-485, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26833088

RESUMEN

Chromatin ADP-ribosylation regulates important cellular processes. However, the exact location and magnitude of chromatin ADP-ribosylation are largely unknown. A robust and versatile method for assessing chromatin ADP-ribosylation is therefore crucial for further understanding its function. Here, we present a chromatin affinity precipitation method based on the high specificity and avidity of two well-characterized ADP-ribose binding domains to map chromatin ADP-ribosylation at the genome-wide scale and at specific loci. Our ADPr-ChAP method revealed that in cells exposed to oxidative stress, ADP-ribosylation of chromatin scales with histone density, with highest levels at heterochromatic sites and depletion at active promoters. Furthermore, in growth factor-induced adipocyte differentiation, increased chromatin ADP-ribosylation was observed at PPARγ target genes, whose expression is ADP-ribosylation dependent. In combination with deep-sequencing and conventional chromatin immunoprecipitation, the established ADPr-ChAP provides a valuable resource for the bioinformatic comparison of ADP-ribosylation with other chromatin modifications and for addressing its role in other biologically important processes.


Asunto(s)
Adenosina Difosfato Ribosa/metabolismo , Adipocitos/metabolismo , Núcleo Celular/metabolismo , Inmunoprecipitación de Cromatina/métodos , Cromatina/metabolismo , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Adipogénesis , Animales , Sitios de Unión , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Cromatina/genética , Biología Computacional , Regulación de la Expresión Génica , Hormona del Crecimiento/farmacología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Peróxido de Hidrógeno/farmacología , Ratones , Estrés Oxidativo , PPAR gamma/genética , PPAR gamma/metabolismo , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Estructura Terciaria de Proteína , Transfección
7.
Nucleic Acids Res ; 49(1): 145-157, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33290556

RESUMEN

Mammalian de novo DNA methyltransferases (DNMT) are responsible for the establishment of cell-type-specific DNA methylation in healthy and diseased tissues. Through genome-wide analysis of de novo methylation activity in murine stem cells we uncover that DNMT3A prefers to methylate CpGs followed by cytosines or thymines, while DNMT3B predominantly methylates CpGs followed by guanines or adenines. These signatures are further observed at non-CpG sites, resembling methylation context observed in specialised cell types, including neurons and oocytes. We further show that these preferences result from structural differences in the catalytic domains of the two de novo DNMTs and are not a consequence of differential recruitment to the genome. Molecular dynamics simulations suggest that, in case of human DNMT3A, the preference is due to favourable polar interactions between the flexible Arg836 side chain and the guanine that base-pairs with the cytosine following the CpG. By exchanging arginine to a lysine, the corresponding side chain in DNMT3B, the sequence preference is reversed, confirming the requirement for arginine at this position. This context-dependent enzymatic activity provides additional insights into the complex regulation of DNA methylation patterns.


Asunto(s)
Islas de CpG/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/genética , Ratones/genética , Sustitución de Aminoácidos , Animales , Arginina/química , Secuencia de Bases , Cristalografía por Rayos X , Citosina/química , ADN Metiltransferasa 3A , Conjuntos de Datos como Asunto , Células Madre Embrionarias/metabolismo , Técnicas de Inactivación de Genes , Guanina/química , Humanos , Lisina/química , Simulación de Dinámica Molecular , Especificidad por Sustrato , Sulfitos , Secuenciación Completa del Genoma , ADN Metiltransferasa 3B
8.
Genome Res ; 29(4): 554-563, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30709850

RESUMEN

Most mammalian RNA polymerase II initiation events occur at CpG islands, which are rich in CpGs and devoid of DNA methylation. Despite their relevance for gene regulation, it is unknown to what extent the CpG dinucleotide itself actually contributes to promoter activity. To address this question, we determined the transcriptional activity of a large number of chromosomally integrated promoter constructs and monitored binding of transcription factors assumed to play a role in CpG island activity. This revealed that CpG density significantly improves motif-based prediction of transcription factor binding. Our experiments also show that high CpG density alone is insufficient for transcriptional activity, yet results in increased transcriptional output when combined with particular transcription factor motifs. However, this CpG contribution to promoter activity is independent of DNA methyltransferase activity. Together, this refines our understanding of mammalian promoter regulation as it shows that high CpG density within CpG islands directly contributes to an environment permissive for full transcriptional activity.


Asunto(s)
Islas de CpG , Metilación de ADN , Regiones Promotoras Genéticas , Activación Transcripcional , Animales , Línea Celular , Células Cultivadas , Ratones , Unión Proteica , Factores de Transcripción/metabolismo
9.
EMBO J ; 36(23): 3421-3434, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29074627

RESUMEN

DNA methylation is a prevalent epigenetic modification involved in transcriptional regulation and essential for mammalian development. While the genome-wide distribution of this mark has been studied to great detail, the mechanisms responsible for its correct deposition, as well as the cause for its aberrant localization in cancers, have not been fully elucidated. Here, we have compared the activity of individual DNMT3A isoforms in mouse embryonic stem and neuronal progenitor cells and report that these isoforms differ in their genomic binding and DNA methylation activity at regulatory sites. We identify that the longer isoform DNMT3A1 preferentially localizes to the methylated shores of bivalent CpG island promoters in a tissue-specific manner. The isoform-specific targeting of DNMT3A1 coincides with elevated hydroxymethylcytosine (5-hmC) deposition, suggesting an involvement of this isoform in mediating turnover of DNA methylation at these sites. Through genetic deletion and rescue experiments, we demonstrate that this isoform-specific recruitment plays a role in de novo DNA methylation at CpG island shores, with potential implications on H3K27me3-mediated regulation of developmental genes.


Asunto(s)
Islas de CpG , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Animales , Sitios de Unión , Diferenciación Celular , Línea Celular , Células Cultivadas , ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo
10.
Nature ; 520(7546): 243-7, 2015 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-25607372

RESUMEN

DNA methylation is an epigenetic modification associated with transcriptional repression of promoters and is essential for mammalian development. Establishment of DNA methylation is mediated by the de novo DNA methyltransferases DNMT3A and DNMT3B, whereas DNMT1 ensures maintenance of methylation through replication. Absence of these enzymes is lethal, and somatic mutations in these genes have been associated with several human diseases. How genomic DNA methylation patterns are regulated remains poorly understood, as the mechanisms that guide recruitment and activity of DNMTs in vivo are largely unknown. To gain insights into this matter we determined genomic binding and site-specific activity of the mammalian de novo DNA methyltransferases DNMT3A and DNMT3B. We show that both enzymes localize to methylated, CpG-dense regions in mouse stem cells, yet are excluded from active promoters and enhancers. By specifically measuring sites of de novo methylation, we observe that enzymatic activity reflects binding. De novo methylation increases with CpG density, yet is excluded from nucleosomes. Notably, we observed selective binding of DNMT3B to the bodies of transcribed genes, which leads to their preferential methylation. This targeting to transcribed sequences requires SETD2-mediated methylation of lysine 36 on histone H3 and a functional PWWP domain of DNMT3B. Together these findings reveal how sequence and chromatin cues guide de novo methyltransferase activity to ensure methylome integrity.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/genética , Epigénesis Genética/genética , Genoma/genética , Animales , Línea Celular , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Islas de CpG/genética , ADN (Citosina-5-)-Metiltransferasas/química , ADN Metiltransferasa 3A , Células Madre Embrionarias/enzimología , Células Madre Embrionarias/metabolismo , Elementos de Facilitación Genéticos/genética , Genómica , N-Metiltransferasa de Histona-Lisina/deficiencia , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Ratones , Regiones Promotoras Genéticas/genética , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Transcripción Genética/genética , ADN Metiltransferasa 3B
11.
PLoS Genet ; 13(12): e1007102, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29267285

RESUMEN

Genomic location can inform on potential function and recruitment signals for chromatin-associated proteins. High mobility group (Hmg) proteins are of similar size as histones with Hmga1 and Hmga2 being particularly abundant in replicating normal tissues and in cancerous cells. While several roles for Hmga proteins have been proposed we lack a comprehensive description of their genomic location as a function of chromatin, DNA sequence and functional domains. Here we report such a characterization in mouse embryonic stem cells in which we introduce biotin-tagged constructs of wild-type and DNA-binding domain mutants. Comparative analysis of the genome-wide distribution of Hmga proteins reveals pervasive binding, a feature that critically depends on a functional DNA-binding domain and which is shared by both Hmga proteins. Assessment of the underlying queues instructive for this binding modality identifies AT richness, defined as high frequency of A or T bases, as the major criterion for local binding. Additionally, we show that other chromatin states such as those linked to cis-regulatory regions have little impact on Hmga binding both in stem and differentiated cells. As a consequence, Hmga proteins are preferentially found at AT-rich regions such as constitutively heterochromatic regions but are absent from enhancers and promoters arguing for a limited role in regulating individual genes. In line with this model, we show that genetic deletion of Hmga proteins in stem cells causes limited transcriptional effects and that binding is conserved in neuronal progenitors. Overall our comparative study describing the in vivo binding modality of Hmga1 and Hmga2 identifies the proteins' preference for AT-rich DNA genome-wide and argues against a suggested function of Hmga at regulatory regions. Instead we discover pervasive binding with enrichment at regions of higher AT content irrespective of local variation in chromatin modifications.


Asunto(s)
Secuencia Rica en At , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Animales , Composición de Base , Secuencia de Bases , Cromatina/genética , Cromatina/metabolismo , ADN/química , ADN/genética , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/metabolismo , Histonas/genética , Ratones , Ratones Endogámicos C57BL , Regiones Promotoras Genéticas , Unión Proteica , Secuencias Reguladoras de Ácidos Nucleicos
12.
Plant Cell ; 27(6): 1788-800, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26023162

RESUMEN

DNA damage repair is an essential cellular mechanism that maintains genome stability. Here, we show that the nonmethylable cytidine analog zebularine induces a DNA damage response in Arabidopsis thaliana, independent of changes in DNA methylation. In contrast to genotoxic agents that induce damage in a cell cycle stage-independent manner, zebularine induces damage specifically during strand synthesis in DNA replication. The signaling of this damage is mediated by additive activity of ATAXIA TELANGIECTASIA MUTATED AND RAD3-RELATED and ATAXIA TELANGIECTASIA MUTATED kinases, which cause postreplicative cell cycle arrest and increased endoreplication. The repair requires a functional STRUCTURAL MAINTENANCE OF CHROMOSOMES5 (SMC5)-SMC6 complex and is accomplished predominantly by synthesis-dependent strand-annealing homologous recombination. Here, we provide insight into the response mechanism for coping with the genotoxic effects of zebularine and identify several components of the zebularine-induced DNA damage repair pathway.


Asunto(s)
Arabidopsis/fisiología , Proteínas de la Ataxia Telangiectasia Mutada/fisiología , Citidina/análogos & derivados , Daño del ADN/efectos de los fármacos , Reparación del ADN/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/fisiología , Ciclo Celular/efectos de los fármacos , Citidina/farmacología , Replicación del ADN/efectos de los fármacos
13.
EMBO Rep ; 15(4): 446-52, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24562611

RESUMEN

In plants, transposable elements (TEs) are kept inactive by transcriptional gene silencing (TGS). TGS is established and perpetuated by RNA-directed DNA methylation (RdDM) and maintenance methylation pathways, respectively. Here, we describe a novel RdDM function specific for shoot apical meristems that reinforces silencing of TEs during early vegetative growth. In meristems, RdDM counteracts drug-induced interference with TGS maintenance and consequently prevents TE activation. Simultaneous disturbance of both TGS pathways leads to transcriptionally active states of repetitive sequences that are inherited by somatic tissues and partially by the progeny. This apical meristem-specific mechanism is mediated by increased levels of TGS factors and provides a checkpoint for correct epigenetic inheritance during the transition from vegetative to reproductive phase and to the next generation.


Asunto(s)
Arabidopsis/genética , Elementos Transponibles de ADN , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Meristema/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Metilación de ADN , ADN de Plantas/genética , Meristema/metabolismo , Especificidad de Órganos , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Análisis de Secuencia de ADN , Transcripción Genética , Transcriptoma
14.
PLoS Genet ; 7(6): e1002090, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21655081

RESUMEN

Cellular differentiation entails reprogramming of the transcriptome from a pluripotent to a unipotent fate. This process was suggested to coincide with a global increase of repressive heterochromatin, which results in a reduction of transcriptional plasticity and potential. Here we report the dynamics of the transcriptome and an abundant heterochromatic histone modification, dimethylation of histone H3 at lysine 9 (H3K9me2), during neuronal differentiation of embryonic stem cells. In contrast to the prevailing model, we find H3K9me2 to occupy over 50% of chromosomal regions already in stem cells. Marked are most genomic regions that are devoid of transcription and a subgroup of histone modifications. Importantly, no global increase occurs during differentiation, but discrete local changes of H3K9me2 particularly at genic regions can be detected. Mirroring the cell fate change, many genes show altered expression upon differentiation. Quantitative sequencing of transcripts demonstrates however that the total number of active genes is equal between stem cells and several tested differentiated cell types. Together, these findings reveal high prevalence of a heterochromatic mark in stem cells and challenge the model of low abundance of epigenetic repression and resulting global basal level transcription in stem cells. This suggests that cellular differentiation entails local rather than global changes in epigenetic repression and transcriptional activity.


Asunto(s)
Diferenciación Celular/genética , Células Madre Embrionarias/citología , Heterocromatina/metabolismo , Histonas/metabolismo , Células Madre Pluripotentes/citología , Transcripción Genética , Animales , Células Madre Embrionarias/metabolismo , Epigénesis Genética , Genoma , Histonas/química , Lisina/metabolismo , Ratones , Neuronas/citología , Neuronas/metabolismo , Células Madre Pluripotentes/metabolismo
15.
Plant Cell ; 22(9): 3118-29, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20876829

RESUMEN

Epigenetic factors determine responses to internal and external stimuli in eukaryotic organisms. Whether and how environmental conditions feed back to the epigenetic landscape is more a matter of suggestion than of substantiation. Plants are suitable organisms with which to address this question due to their sessile lifestyle and diversification of epigenetic regulators. We show that several repetitive elements of Arabidopsis thaliana that are under epigenetic regulation by transcriptional gene silencing at ambient temperatures and upon short term heat exposure become activated by prolonged heat stress. Activation can occur without loss of DNA methylation and with only minor changes to histone modifications but is accompanied by loss of nucleosomes and by heterochromatin decondensation. Whereas decondensation persists, nucleosome loading and transcriptional silencing are restored upon recovery from heat stress but are delayed in mutants with impaired chromatin assembly functions. The results provide evidence that environmental conditions can override epigenetic regulation, at least transiently, which might open a window for more permanent epigenetic changes.


Asunto(s)
Arabidopsis/genética , Epigénesis Genética , Respuesta al Choque Térmico , Secuencias Repetitivas de Ácidos Nucleicos , Arabidopsis/fisiología , Metilación de ADN , ADN de Plantas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Heterocromatina/metabolismo , Histonas/metabolismo , Calor , Nucleosomas/metabolismo , Transcripción Genética , Activación Transcripcional
16.
Plant Cell ; 22(1): 34-47, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20097869

RESUMEN

Epigenetic changes of gene expression can potentially be reversed by developmental programs, genetic manipulation, or pharmacological interference. However, a case of transcriptional gene silencing, originally observed in tetraploid Arabidopsis thaliana plants, created an epiallele resistant to many mutations or inhibitor treatments that activate many other suppressed genes. This raised the question about the molecular basis of this extreme stability. A combination of forward and reverse genetics and drug application provides evidence for an epigenetic double lock that is only alleviated upon the simultaneous removal of both DNA methylation and histone methylation. Therefore, the cooperation of multiple chromatin modifications can generate unanticipated stability of epigenetic states and contributes to heritable diversity of gene expression patterns.


Asunto(s)
Arabidopsis/genética , Cromatina/metabolismo , Epigénesis Genética , Adenosilhomocisteinasa/genética , Alelos , Proteínas de Arabidopsis/genética , Metilación de ADN , ADN Bacteriano/genética , ADN de Plantas/metabolismo , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas , Inhibidores de Histona Desacetilasas/metabolismo , Histonas/metabolismo , Mutagénesis Insercional , Mutación , Poliploidía , Análisis de Secuencia de ADN , Factores de Transcripción/genética , Transcripción Genética
17.
Nat Commun ; 14(1): 3848, 2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-37385984

RESUMEN

The Nucleosome Remodeling and Deacetylation (NuRD) complex is a crucial regulator of cellular differentiation. Two members of the Methyl-CpG-binding domain (MBD) protein family, MBD2 and MBD3, are known to be integral, but mutually exclusive subunits of the NuRD complex. Several MBD2 and MBD3 isoforms are present in mammalian cells, resulting in distinct MBD-NuRD complexes. Whether these different complexes serve distinct functional activities during differentiation is not fully explored. Based on the essential role of MBD3 in lineage commitment, we systematically investigated a diverse set of MBD2 and MBD3 variants for their potential to rescue the differentiation block observed for mouse embryonic stem cells (ESCs) lacking MBD3. While MBD3 is indeed crucial for ESC differentiation to neuronal cells, it functions independently of its MBD domain. We further identify that MBD2 isoforms can replace MBD3 during lineage commitment, however with different potential. Full-length MBD2a only partially rescues the differentiation block, while MBD2b, an isoform lacking an N-terminal GR-rich repeat, fully rescues the Mbd3 KO phenotype. In case of MBD2a, we further show that removing the methylated DNA binding capacity or the GR-rich repeat enables full redundancy to MBD3, highlighting the synergistic requirements for these domains in diversifying NuRD complex function.


Asunto(s)
Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2 , Nucleosomas , Animales , Ratones , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Isoformas de Proteínas/genética , Diferenciación Celular , Células Madre Embrionarias de Ratones , Mamíferos
18.
Nat Genet ; 54(11): 1702-1710, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36333500

RESUMEN

Genomic imprinting is regulated by parental-specific DNA methylation of imprinting control regions (ICRs). Despite an identical DNA sequence, ICRs can exist in two distinct epigenetic states that are memorized throughout unlimited cell divisions and reset during germline formation. Here, we systematically study the genetic and epigenetic determinants of this epigenetic bistability. By iterative integration of ICRs and related DNA sequences to an ectopic location in the mouse genome, we first identify the DNA sequence features required for maintenance of epigenetic states in embryonic stem cells. The autonomous regulatory properties of ICRs further enabled us to create DNA-methylation-sensitive reporters and to screen for key components involved in regulating their epigenetic memory. Besides DNMT1, UHRF1 and ZFP57, we identify factors that prevent switching from methylated to unmethylated states and show that two of these candidates, ATF7IP and ZMYM2, are important for the stability of DNA and H3K9 methylation at ICRs in embryonic stem cells.


Asunto(s)
Metilación de ADN , Impresión Genómica , Ratones , Animales , Secuencia de Bases , Metilación de ADN/genética , Epigenómica , Cromatina/genética , Proteínas Represoras/genética
19.
Curr Opin Cell Biol ; 70: 10-17, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33276273

RESUMEN

Nucleosomes, the basic structures used to package genetic information into chromatin, are subject to a diverse array of chemical modifications. A large number of these marks serve as interaction hubs for many nuclear proteins and provide critical structural features for protein recruitment. Dynamic deposition and removal of chromatin modifications by regulatory proteins ensure their correct deposition to the genome, which is essential for DNA replication, transcription, chromatin compaction, or DNA damage repair. The spatiotemporal regulation and maintenance of chromatin marks relies on coordinated activities of writer, eraser, and reader enzymes and often depends on complex multicomponent regulatory circuits. In recent years, the field has made enormous advances in uncovering the mechanisms that regulate chromatin modifications. Here, we discuss well-established and emerging concepts in chromatin biology ranging from cooperativity and multivalent interactions to regulatory feedback loops and increased local concentration of chromatin-modifying enzymes.


Asunto(s)
Cromatina , Reparación del ADN , Epigénesis Genética , Replicación del ADN , Nucleosomas , Procesamiento Proteico-Postraduccional
20.
Plant J ; 57(3): 542-54, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18826433

RESUMEN

Covalent modification by methylation of cytosine residues represents an important epigenetic hallmark. While sequence analysis after bisulphite conversion allows correlative analyses with single-base resolution, functional analysis by interference with DNA methylation is less precise, due to the complexity of methylation enzymes and their targets. A cytidine analogue, 5-azacytidine, is frequently used as an inhibitor of DNA methyltransferases, but its rapid degradation in aqueous solution is problematic for culture periods of longer than a few hours. Application of zebularine, a more stable cytidine analogue with a similar mode of action that is successfully used as a methylation inhibitor in Neurospora and mammalian tumour cell lines, can significantly reduce DNA methylation in plants in a dose-dependent and transient manner independent of sequence context. Demethylation is connected with transcriptional reactivation and partial decondensation of heterochromatin. Zebularine represents a promising new and versatile tool for investigating the role of DNA methylation in plants with regard to transcriptional control, maintenance and formation of (hetero-) chromatin.


Asunto(s)
Citidina/análogos & derivados , Citosina/metabolismo , Metilación de ADN/efectos de los fármacos , ADN de Plantas/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Citidina/farmacología , Desoxicitidina/análogos & derivados , Desoxicitidina/metabolismo , Relación Dosis-Respuesta a Droga , Genoma de Planta , Medicago sativa/genética , Medicago sativa/crecimiento & desarrollo , Medicago sativa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA