Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Dairy Sci ; 101(4): 3118-3125, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29428766

RESUMEN

Fat is the most variable milk component, and maintaining milk fat continues to be a challenge on commercial dairy farms. Our objectives were to establish associations between herd-level risk factors for milk fat depression and bulk tank milk fat content in commercial dairy herds feeding monensin. Seventy-nine Holstein commercial dairy herds in the northeast and Upper Midwest United States were enrolled in an observational study. Data were collected on herd characteristics, total mixed ration (TMR) samples, all component silage samples, and bulk tank milk samples. The unconditional univariable association of each explanatory variable and bulk tank milk fat percentage was evaluated using simple linear regression and multivariable regression models. Milk fat content of trans-10 C18:1 had an exponentially negative relationship to herd milk fat percentage. In general, milk fat content of fatty acids synthesized de novo in the mammary gland were positively related to herd milk fat, and the content of several trans-C18:1 fatty acids, which would be products of alternate pathways of ruminal biohydrogenation, were negatively related to herd milk fat. Variables related to TMR composition did not have univariable relationships with herd milk fat percentage. Herds that had >49.8% of the TMR particles on the middle screen of the Penn State particle separator had higher milk fat percentage than those with ≤49.8%, and herds with >54.0% of TMR particles in the bottom pan had lower milk fat percentage than herds with ≤54.0%. Dietary content of monounsaturated fatty acids (C16:1 and C18:1) had negative relationships with herd milk fat percentage; however, no single diet component accounted for more than 11% of the variation in herd-level milk fat percentage. Univariable monensin dose was not associated with herd milk fat percentage. The relative lack of significant univariate relationships with herd-level milk fat suggests many factors contribute to milk fat content, and herds experiencing low milk fat will need to examine many potential risk factors when working to troubleshoot this challenge.


Asunto(s)
Bovinos/fisiología , Ácidos Grasos/metabolismo , Leche/química , Monensina/farmacología , Ionóforos de Protónes/farmacología , Animales , Estudios Transversales , Dieta/veterinaria , Suplementos Dietéticos/análisis , Femenino , Ensilaje/análisis , Estados Unidos
2.
J Dairy Sci ; 100(12): 10353-10366, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29153169

RESUMEN

We have seen remarkable advances in animal productivity in the last 75 years, with annual milk yield per cow increasing over 4-fold and no evidence of nearing a plateau. Because of these gains in productive efficiency, there have been dramatic reductions in resource inputs and the carbon footprint per unit of milk produced. The primary source for the historic gains relates to animal variation in nutrient partitioning. The regulation of nutrient use for productive functions has the overall goal of maintaining the cow's well-being regardless of the physiological or environmental challenges. From a conceptual standpoint, it involves both acute homeostatic controls operating on a minute-by-minute basis and chronic homeorhetic controls operating on a long-term basis to provide orchestrated adaptations that coordinate tissues and body processes. This endocrine regulation is mediated by changes in circulating anabolic and catabolic hormones, hormone membrane receptors and intracellular signaling pathways. The coordination of tissues and physiological systems includes a plethora of hormones, but insulin and somatotropin are 2 key regulators of nutrient trafficking. Herein, we review the advances in our understanding of both conceptual and actual regulation of nutrient partitioning in support of milk synthesis and identify examples of the challenges and future opportunities in dairy science.


Asunto(s)
Ciencias de la Nutrición Animal/tendencias , Bovinos , Industria Lechera , Lactancia , Animales , Industria Lechera/métodos , Industria Lechera/tendencias , Femenino , Leche
3.
J Dairy Sci ; 98(3): 1851-5, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25529418

RESUMEN

Recently, a circadian rhythm of milk and milk component synthesis has been characterized that is partially dependent on the timing of feed intake. Our objective was to determine if inhibition of milk fat synthesis during diet-induced milk fat depression occurred to a higher degree during certain phases of the day. A retrospective analysis was conducted on 2 experiments that induced milk fat depression while milking cows 3 times per day at equal intervals. The response at each milking was analyzed using mixed model ANOVA with repeated measures. In experiment 1, nine multiparous Holstein cows were arranged in a 3×3 Latin square design, and treatments were control, 3-d intravenous infusion of 10 g/d of trans-10,cis-12 conjugated linoleic acid (CLA), and a low-forage and high-fat diet for 10 d. In experiment 2, ten multiparous ruminally cannulated cows were arranged in a replicated design and milk samples were collected during a control period or after 5 d of abomasal infusion of 10 g/d of CLA. The daily pattern of milk fat concentration and yield did not differ between treatments in either experiment. In experiment 1, an effect was found of treatment and milking time on milk fat concentration and yield. Similarly, in experiment 2, main effects were found of treatment and milking time on milk fat concentration and an effect of treatment, but no effect of milking time on milk fat yield. Milk fat percent was increased from 3.41 to 4.06% and 3.25 to 3.48% from the morning to the afternoon milking in experiments 1 and 2, respectively. Additionally, milk fatty acid profile, including trans intermediates, was changed over the day in experiment 1, but the magnitude of the changes were small and the pattern did not differ among treatments. A daily rhythm of milk fat concentration and yield was observed in cows milked 3 times a day, but milk fat depression decreases milk fat yield equally over the day.


Asunto(s)
Bovinos/fisiología , Ritmo Circadiano , Dieta/veterinaria , Grasas/análisis , Ácidos Linoleicos Conjugados/administración & dosificación , Leche/química , Animales , Dieta Alta en Grasa , Grasas Insaturadas en la Dieta/administración & dosificación , Fibras de la Dieta/administración & dosificación , Ácidos Grasos/análisis , Femenino , Lactancia , Lípidos/biosíntesis , Estudios Retrospectivos
4.
J Dairy Sci ; 97(8): 5001-6, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24931525

RESUMEN

The objective of this study was to examine the effect of trans-10,cis-12 conjugated linoleic acid (t10c12CLA) on the activation of transcription factors that potentially regulate lipid synthesis in a bovine mammary epithelial cell line (MAC-T). Cells were transfected with luciferase reporter constructs containing sterol response element (SRE and SRE complex) for sterol regulatory element binding protein-1, peroxisome proliferator response element for peroxisome proliferator-activated receptor γ, or liver X receptor response element for liver X receptor. Different concentrations of t10c12CLA (0, 25, 50, 75, or 100µM) were applied to cells to determine the activation of transcription factors. The influence of t10c12CLA bond structure on transcription factor activation was also investigated by treating cells with different 18:1 fatty acid isomers (trans-10 18:1 or cis-12 18:1) at 100µM. Cells were harvested for luciferase assay after 24h of treatment. Compared with linoleic acid and cis-9,trans-11 CLA controls, the SRE reporters had significantly lower activity in t10c12CLA-treated cells at 50 and 75µM for SRE complex and SRE, respectively. Lower SRE and SRE complex activation was observed in t10c12CLA treatment at 25, 50, and 75µM compared with 0µM. The peroxisome proliferator response element and liver X receptor response element reporters did not respond differently between the t10c12CLA treatment and controls. Compared with t10c12CLA, both trans-10 18:1 and cis-12 18:1 increased the activities of SRE and SRE complex reporters by 1.3- to 4.2-fold. In conclusion, t10c12CLA has an inhibitory role in lipogenic transcription factor activation of SRE, and this negative effect is due to the conjugation of trans-10 and cis-12 double bonds in the fatty acid. Furthermore, we found no support for a regulatory role of response elements for peroxisome proliferator-activated receptor γ or liver X receptor in the t10c12CLA inhibition of mammary lipid synthesis.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Ácidos Linoleicos Conjugados/farmacología , Lipogénesis , Factores de Transcripción/metabolismo , Animales , Bovinos , Recuento de Células , Células Epiteliales/metabolismo , Ácidos Grasos/metabolismo , Isomerismo , Ácido Linoleico , Receptores X del Hígado , Receptores Nucleares Huérfanos/genética , Receptores Nucleares Huérfanos/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Factores de Transcripción/genética
5.
J Dairy Sci ; 96(6): 3825-34, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23587385

RESUMEN

Conjugated linoleic acids (CLA) are produced during rumen biohydrogenation and exert a range of biological effects. The trans-10,cis-12 CLA isomer is a potent inhibitor of milk fat synthesis in lactating dairy cows and some aspects of the mechanism have been established. Conjugated linoleic acid-induced milk fat depression has also been observed in small ruminants and our objective was to examine the molecular mechanism in lactating ewes. Multiparous lactating ewes were fed a basal ration (0.55:0.45 concentrate-to-forage ratio; dry matter basis) and randomly allocated to 2 dietary CLA levels (n=8 ewes/treatment). Treatments were zero CLA (control) or 15 g/d of lipid-encapsulated CLA supplement containing cis-9,trans-11 and trans-10,cis-12 CLA isomers in equal proportions. Treatments were fed for 10 wk and the CLA supplement provided 1.5 g of trans-10,cis-12/d. No treatment effects were observed on milk yield or milk composition for protein or lactose at wk 10 of the study. In contrast, CLA treatment significantly decreased both milk fat percentage and milk fat yield (g/d) by about 23%. The de novo synthesized fatty acids (FA; C16) was increased (10%) for the CLA treatment. In agreement with the reduced de novo FA synthesis, mRNA abundance of acetyl-coenzyme A carboxylase α, FA synthase, stearoyl-CoA desaturase 1, and glycerol-3-phosphate acyltransferase 6 decreased by 25 to 40% in the CLA-treated group. Conjugated linoleic acid treatment did not significantly reduce the mRNA abundance of enzymes involved in NADPH production, but the mRNA abundance for sterol regulatory element-binding factor 1 and insulin-induced gene 1, genes involved in regulation of transcription of lipogenic enzymes, was decreased by almost 30 and 55%, respectively, with CLA treatment. Furthermore, mRNA abundance of lipoprotein lipase decreased by almost 40% due to CLA treatment. In conclusion, the mechanism for CLA-induced milk fat depression in lactating ewes involved the sterol regulatory element-binding protein transcription factor family and a coordinated downregulation in transcript abundance for lipogenic enzymes involved in mammary lipid synthesis.


Asunto(s)
Grasas/análisis , Ácidos Linoleicos Conjugados/farmacología , Lipogénesis/genética , Glándulas Mamarias Animales/metabolismo , Leche/química , Ovinos/fisiología , Animales , Dieta/veterinaria , Femenino , Expresión Génica/efectos de los fármacos , Lactancia , Ácidos Linoleicos Conjugados/administración & dosificación , Lípidos/biosíntesis , Lipoproteína Lipasa/genética , Proteínas de la Leche/análisis , Reacción en Cadena de la Polimerasa/veterinaria , Distribución Aleatoria , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética
6.
J Dairy Sci ; 95(3): 1437-46, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22365226

RESUMEN

Feeding conjugated linoleic acid (CLA) in a rumen-inert form to dairy ewes has been shown to increase milk production, alter milk composition, and increase the milk fat CLA content. However, few studies have tested ruminally unprotected CLA sources. The objective of this study was to evaluate the effects of an unprotected CLA supplement (29.8% of cis-9,trans-11 and 29.9% of trans-10,cis-12 isomers as methyl esters) on milk yield and composition of dairy ewes. Twenty-four lactating Lacaune ewes were used in a crossover design and received 2 dietary treatments: (1) control: basal diet containing no supplemental lipid and (2) basal diet plus CLA (30 g/d). The CLA supplement was mixed into the concentrate and fed in 2 equal meals after morning and afternoon milkings. Each experimental period consisted of 21 d: 7 d for adaptation and 14 d for data collection. The CLA supplement decreased milk fat content and yield by 31.3 and 38.0%, respectively. Milk yield and secretion of milk lactose and protein were decreased by 8.0, 9.8, and 5.6%, respectively. On the other hand, milk protein content and linear SCC score were 1.8 and 17.7% higher in ewes fed the CLA supplement. The concentration of milk fatty acids originating from de novo synthesis (C16) was increased by 22.6% in ewes fed the CLA supplement. The CLA supplement decreased C14:1/C14:0, C16:1/C16:0, and C18:1/C18:0 desaturase indexes by 25, 18.7, and 0.1%, respectively, but increased the cis-9,trans-11 CLA/trans-11 C18:1 ratio by 8.6%. The concentrations of trans-10,cis-12 CLA and cis-9,trans-11 CLA in milk fat was 309 and 33.4% higher in ewes fed CLA. Pronounced milk fat depression coupled with the deleterious effects on milk yield, milk SCC, and secretion of all milk solids observed in ewes fed an unprotected CLA supplement is likely to be associated with high doses of trans-10,cis-12 CLA reaching the mammary gland, corroborating previous results obtained with dairy cows.


Asunto(s)
Suplementos Dietéticos/efectos adversos , Lactancia/efectos de los fármacos , Ácidos Linoleicos Conjugados/farmacología , Leche/metabolismo , Animales , Dieta/veterinaria , Ácidos Grasos/análisis , Femenino , Lactosa/análisis , Leche/química , Proteínas de la Leche/análisis , Ovinos
7.
J Dairy Sci ; 95(12): 7299-307, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23063161

RESUMEN

Conjugated linoleic acid (CLA; cis-9,trans-11 18:2), a bioactive fatty acid (FA) found in milk and dairy products, has potential human health benefits due to its anticarcinogenic and antiatherogenic properties. Conjugated linoleic acid concentrations in milk fat can be markedly increased by dietary manipulation; however, high levels of CLA are difficult to sustain as rumen biohydrogenation shifts and milk fat depression (MFD) is often induced. Our objective was to feed a typical Northeastern corn-based diet and investigate whether vitamin E and soybean oil supplementation would sustain an enhanced milk fat CLA content while avoiding MFD. Holstein cows (n=48) were assigned to a completely randomized block design with repeated measures for 28 d and received 1 of 4 dietary treatments: (1) control (CON), (2) 10,000 IU of vitamin E/d (VE), (3) 2.5% soybean oil (SO), and (4) 2.5% soybean oil plus 10,000 IU of vitamin E/d (SO-VE). A 2-wk pretreatment control diet served as the covariate. Milk fat percentage was reduced by both high-oil diets (3.53, 3.56, 2.94, and 2.92% for CON, VE, SO, and SO-VE), whereas milk yield increased significantly for the SO-VE diet only, thus partially mitigating MFD by oil feeding. Milk protein percentage was higher for cows fed the SO diet (3.04, 3.05, 3.28, and 3.03% for CON, VE, SO, and SO-VE), implying that nutrient partitioning or ruminal supply of microbial protein was altered in response to the reduction in milk fat. Milk fat concentration of CLA more than doubled in cows fed the diets supplemented with soybean oil, with concurrent increases in trans-10 18:1 and trans-11 18:1 FA. Moreover, milk fat from cows fed the 2 soybean oil diets had 39.1% less de novo synthesized FA and 33.8% more long-chain preformed FA, and vitamin E had no effect on milk fat composition. Overall, dietary supplements of soybean oil caused a reduction in milk fat percentage and a shift in FA composition characteristic of MFD. Supplementing diets with vitamin E did not overcome the oil-induced reduction in milk fat percentage or changes in FA profile, but partially mitigated the reduction in fat yield by increasing milk yield.


Asunto(s)
Suplementos Dietéticos , Ácido Linoleico/farmacología , Ácidos Linoleicos Conjugados/análisis , Leche/química , Vitamina E/farmacología , Vitaminas/farmacología , Animales , Bovinos , Ácidos Grasos/análisis , Ácidos Grasos/metabolismo , Femenino , Ácidos Linoleicos Conjugados/metabolismo , Factores de Tiempo
8.
J Dairy Sci ; 95(1): 109-16, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22192190

RESUMEN

Trans-10,cis-12 conjugated linoleic acid (CLA) inhibits milk fat synthesis in dairy ewes, but the effects under varying dietary metabolizable protein (MP) levels when energy-limited diets are fed have not been examined. The objectives of the study were to evaluate the response of lactating dairy ewes to CLA supplementation when fed diets limited in metabolizable energy (ME) and with either a low or high MP content. Twelve multiparous ewes in early lactation were randomly allocated to 1 of 4 dietary treatments: a high MP (110% of daily MP requirement) or low MP (93% of daily MP requirement) diet unsupplemented or supplemented with a lipid-encapsulated CLA to provide 2.4 g/d of trans-10,cis-12 CLA, in each of 4 periods of 25 d each in a 4×4 Latin square design. All diets were restricted to supply each ewe with 4.6 Mcal of ME/d (equivalent to 75% of ME requirement). Supplementation with CLA decreased milk fat percentage and yield by 33% and 24%, respectively, and increased milk, milk protein, and lactose yields by 16, 13, and 17%, respectively. Feeding the high MP diet increased the yields of milk, fat, protein, and lactose by 18, 15, 19, and 16%, respectively. Milk fat content of trans-10,cis-12 CLA (g/100g) was 0.09 and <0.01 for the CLA-supplemented and unsupplemented ewes, respectively. Ewes supplemented with CLA had a reduced yield (mmol/d) of fatty acids of C16, although the effect was greatest for C16. Plasma urea concentrations were lowest in ewes supplemented with CLA compared with those unsupplemented (6.5 vs. 7.4 mmol/L, respectively) and receiving low compared with high MP diets (5.6 vs. 8.3 mmol/L, respectively). In conclusion, dairy ewes fed energy-limited diets and supplemented with CLA repartitioned nutrients to increase yields of milk, protein, and lactose, with the response to CLA supplementation and additional MP intake being additive.


Asunto(s)
Proteínas en la Dieta/farmacología , Suplementos Dietéticos , Ingestión de Energía/fisiología , Lactancia/efectos de los fármacos , Ácidos Linoleicos Conjugados/farmacología , Ovinos/fisiología , Animales , Dieta/veterinaria , Proteínas en la Dieta/metabolismo , Ácidos Grasos/análisis , Femenino , Lípidos/análisis , Leche/química , Proteínas de la Leche/análisis , Ovinos/metabolismo , Urea/sangre
9.
J Dairy Sci ; 94(12): 6047-56, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22118092

RESUMEN

Trans-10, cis-12 conjugated linoleic acid (CLA) is a potent inhibitor of milk fat synthesis in the dairy cow. The decrease in milk fat yield during abomasal infusion of CLA reaches a nadir after 3 to 5 d. The acute responses to CLA were evaluated using 4 cows in a crossover design. Cows were milked with the aid of oxytocin every 4h from -28 to 80h and every 6h from 86 to 116h relative to the initiation of abomasal CLA infusion. An initial priming dose of 7.5g of CLA was given at time zero followed by infusion of 2.5g every 4h for 72h. Plasma CLA reached a near-steady-state concentration by 4h, and initial plasma enrichments were greatest in the triglyceride and nonesterified fatty acid fractions. Milk CLA concentration peaked at 6h and reached steady state by 22h. At termination of the infusion, decreases in milk CLA concentration and yield and plasma CLA concentration were best fit by a reciprocal-linear function. Milk fat percentage decreased progressively after 2h and was significant by 14h. Milk fatty acid profile was initially unchanged, but between 18 and 36h after initiation of the CLA dose the proportions of fatty acids progressively shifted, resulting in an increase in fatty acids >C16 and a decrease in fatty acids

Asunto(s)
Lactancia/efectos de los fármacos , Ácidos Linoleicos Conjugados/farmacología , Animales , Bovinos , Ácidos Grasos/análisis , Ácidos Grasos/biosíntesis , Ácidos Grasos no Esterificados/análisis , Ácidos Grasos no Esterificados/sangre , Femenino , Ácidos Linoleicos Conjugados/análisis , Ácidos Linoleicos Conjugados/sangre , Ácidos Linoleicos Conjugados/farmacocinética , Lípidos/análisis , Lípidos/sangre , Leche/química , Estearoil-CoA Desaturasa/antagonistas & inhibidores , Triglicéridos/análisis , Triglicéridos/sangre
10.
J Dairy Sci ; 94(1): 59-65, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21183017

RESUMEN

Consumers are increasingly aware that food components have the potential to influence human health maintenance and disease prevention, and dietary fatty acids (FA) have been of special interest. It has been 25 years since the last survey of US milk FA composition, and during this interval substantial changes in dairy rations have occurred, including increased use of total mixed rations and byproduct feeds as well as the routine use of lipid and FA supplements. Furthermore, analytical procedures have improved allowing greater detail in the routine analysis of FA, especially trans FA. Our objective was to survey US milk fat and determine its FA composition. We obtained samples of fluid milk from 56 milk processing plants across the US every 3 mo for one year to capture seasonal and geographical variations. Processing plants were selected based on the criteria that they represented 50% or more of the fluid milk produced in that area. An overall summary of the milk fat analysis indicated that saturated fatty acids comprised 63.7% of total milk FA with palmitic and stearic acids representing the majority (44.1 and 18.3% of total saturated fatty acids, respectively). Unsaturated fatty acids were 33.2% of total milk FA with oleic acid predominating (71.0% of total unsaturated fatty acids). These values are comparable to those of the previous survey in 1984, considering differences in analytical techniques. Trans FA represented 3.2% of total FA, with vaccenic acid being the major trans isomer (46.5% of total trans FA). Cis-9, trans-11 18:2 conjugated linoleic acid represented 0.55% total milk FA, and the major n-3 FA (linolenic acid, 18:3) composed 0.38%. Analyses for seasonal and regional effects indicated statistical differences for some FA, but these were minor from an overall human nutrition perspective as the FA profile for all samples were numerically similar. Overall, the present study provides a valuable database for current FA composition of US fluid milk, and results demonstrate that the milk fatty acid profile is remarkably consistent across geographic regions and seasons from the perspective of human dietary intake of milk fat.


Asunto(s)
Ácidos Grasos/análisis , Leche/química , Animales , Estaciones del Año , Estados Unidos
11.
Am J Physiol Regul Integr Comp Physiol ; 299(6): R1521-8, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20844263

RESUMEN

The trans 10, cis 12-conjugated linoleic acid (10,12-CLA) isomer reduces adiposity in several animal models. In the mouse, however, this effect is associated with adipose tissue inflammation, hyperinsulinemia and hepatic lipid accumulation. Moreover, 10,12-CLA was recently shown to promote mammary ductal hyperplasia and ErbB2/Her2-driven mammary cancer in the mouse. Reasons for detrimental effects of 10,12-CLA on the mouse mammary gland could relate to its effect on the mammary fat pad (MFP), which is essential for normal development. Accordingly, we hypothesized that mammary effects of 10,12-CLA were mediated through the MFP in a dose-dependent manner. Female FVB mice were fed 10,12-CLA at doses of 0%, 0.1%, 0.2%, or 0.5% of the diet from day 24 of age, and effects on mammary development and metabolism were measured on day 49. The 0.5% dose reduced ductal elongation and caused premature alveolar budding. These effects were associated with increased expression of inflammatory markers and genes shown to alter epithelial growth (IGF binding protein-5) and alveolar budding (TNF-α and receptor of activated NF-κB ligand). The 0.5% dose also caused hyperinsulinemia and hepatic lipid accumulation. In contrast, the 0.1% 10,12-CLA dose had no adverse effects on mammary development, metabolic events, and inflammatory responses, but remained effective in decreasing adipose weights and lipogenic gene expression. These results show that a low dose of 10,12-CLA reduces adiposity in the mouse without negative effects on mammary development, inflammation, and metabolism, and suggest that previously reported detrimental effects relate to the use of excessive doses.


Asunto(s)
Adiposidad/efectos de los fármacos , Metabolismo Basal/efectos de los fármacos , Inflamación/inducido químicamente , Ácidos Linoleicos Conjugados/farmacología , Glándulas Mamarias Animales/efectos de los fármacos , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Administración Oral , Animales , Biomarcadores/metabolismo , Relación Dosis-Respuesta a Droga , Femenino , Hiperinsulinismo/inducido químicamente , Hiperinsulinismo/metabolismo , Inflamación/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Glándulas Mamarias Animales/crecimiento & desarrollo , Glándulas Mamarias Animales/metabolismo , Ratones , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
12.
J Dairy Sci ; 93(5): 1918-25, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20412905

RESUMEN

Consumers are becoming increasingly health conscious, and food product choices have expanded. Choices in the dairy case include fluid milk labeled according to production management practices. Such labeling practices may be misunderstood and perceived by consumers to reflect differences in the quality or nutritional content of milk. Our objective was to investigate nutritional differences in specialty labeled milk, specifically to compare the fatty acid (FA) composition of conventional milk with milk labeled as recombinant bST (rbST)-free or organic. The retail milk samples (n=292) obtained from the 48 contiguous states of the United States represented the consumer supply of pasteurized, homogenized milk of 3 milk types: conventionally produced milk with no specialty labeling, milk labeled rbST-free, and milk labeled organic. We found no statistical differences in the FA composition of conventional and rbST-free milk; however, these 2 groups were statistically different from organic milk for several FA. When measuring FA as a percentage of total FA, organic milk was higher in saturated FA (65.9 vs. 62.8%) and lower in monounsaturated FA (26.8 vs. 29.7%) and polyunsaturated FA (4.3 vs. 4.8%) compared with the average of conventional and rbST-free retail milk samples. Likewise, among bioactive FA compared as a percentage of total FA, organic milk was slightly lower in trans 18:1 FA (2.8 vs. 3.1%) and higher in n-3 FA (0.82 vs. 0.50%) and conjugated linoleic acid (0.70 vs. 0.57%). From a public health perspective, the direction for some of these differences would be considered desirable and for others would be considered undesirable; however, without exception, the magnitudes of the differences in milk FA composition among milk label types were minor and of no physiological importance when considering public health or dietary recommendations. Overall, when data from our analysis of FA composition of conventional milk and milk labeled rbST-free or organic were combined with previous analytical comparisons of the quality and composition of these retail milk samples, results established that there were no meaningful differences that would affect public health and that all milks were similar in nutritional quality and wholesomeness.


Asunto(s)
Industria Lechera/métodos , Ácidos Grasos/análisis , Etiquetado de Alimentos/normas , Leche/química , Animales , Industria Lechera/normas , Alimentos Orgánicos/análisis , Alimentos Orgánicos/normas
13.
J Dairy Sci ; 93(1): 32-7, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20059901

RESUMEN

Very long chain n-3 fatty acids such as eicosapentaenoic acid (EPA; 20:5n-3) are important in human cardiac health and the prevention of chronic diseases, but food sources are limited. Stearidonic acid (SDA; 18:4n-3) is an n-3 fatty acid that humans are able to convert to EPA. In utilizing SDA-enhanced soybean oil (SBO) derived from genetically modified soybeans, our objectives were to examine the potential to increase the n-3 fatty acid content of milk fat and to determine the efficiency of SDA uptake from the digestive tract and transfer to milk fat. Three multiparous, rumen-fistulated Holstein cows were assigned randomly in a 3 x 3 Latin square design to the following treatments: 1) control (no oil infusion); 2) abomasal infusion of SDA-enhanced SBO (SDA-abo); and 3) ruminal infusion of SDA-enhanced SBO (SDA-rum). The SDA-enhanced SBO contained 27.1% SDA, 10.4% alpha-linolenic acid, and 7.2% gamma-linolenic acid. Oil infusions provided 57 g/d of SDA with equal amounts of oil infused into either the rumen or abomasum at 6-h intervals over a 7-d infusion period. Cow numbers were limited and no treatment differences were detected for DMI or milk production (22.9+/-0.5 kg/d and 32.3+/-0.9 kg/d, respectively; least squares means +/- SE), milk protein percentage and yield (3.24+/-0.04% and 1.03+/-0.02 kg/d), or lactose percentage and yield (4.88+/-0.05% and 1.55+/-0.05 kg/d). Treatment also had no effect on milk fat yield (1.36+/-0.03 kg/d), but milk fat percentage was lower for the SDA-rum treatment (4.04+/-0.04% vs. 4.30+/-0.04% for control and 4.41+/-0.05% for SDA-abo). The SDA-abo treatment increased n-3 fatty acids to 3.9% of total milk fatty acids, a value more than 5-fold greater than that for the control. Expressed as a percentage of total milk fatty acids, values (least squares means +/- SE) for the SDA-abo treatment were 1.55+/-0.03% for alpha-linolenic acid (18:3n-3), 1.86+/-0.02 for SDA, 0.23 +/- <0.01 for eicosatetraenoic acid (20:4n-3), and 0.18+/-0.01 for EPA. Transfer efficiency of SDA to milk fat represented 39.3% (range=36.8 to 41.9%) of the abomasally infused SDA and 47.3% (range=45.0 to 49.6%) when the n-3 fatty acids downstream from SDA were included. In contrast, transfer of ruminally infused SDA to milk fat averaged only 1.7% (range=1.3 to 2.1%), indicating extensive rumen biohydrogenation. Overall, results demonstrate the potential to use SDA-enhanced SBO from genetically modified soybeans combined with proper ruminal protection to achieve impressive increases in the milk fat content of SDA and other n-3 fatty acids that are beneficial for human health.


Asunto(s)
Industria Lechera/métodos , Grasas/química , Ácidos Grasos Omega-3/análisis , Leche/química , Plantas Modificadas Genéticamente/química , Aceite de Soja/administración & dosificación , Animales , Bovinos , Ácidos Grasos Omega-3/metabolismo , Femenino , Embarazo , Distribución Aleatoria
14.
J Dairy Sci ; 93(3): 1126-37, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20172234

RESUMEN

Conjugated linoleic acids (CLA) are potent anticarcinogens in animal and in vitro models as well as inhibitors of fatty acid synthesis in mammary gland, liver, and adipose tissue. Our objective was to evaluate long-term CLA supplementation of lactating dairy cows in tropical pasture on milk production and composition and residual effects posttreatment. Thirty crossbred cows grazing stargrass (Cynodon nlemfuensis Vanderyst var. nlemfüensis) were blocked by parity and received 150 g/d of a dietary fat supplement of either Ca-salts of palm oil fatty acids (control) or a mixture of Ca-salts of CLA (CLA treatment). Supplements of fatty acids were mixed with 4 kg/d of concentrate. Grazing plus supplements were estimated to provide 115% of the estimated metabolizable protein requirements from 28 to 84 d in milk (treatment period). The CLA supplement provided 15 g/d of cis-9,trans-11 and 22g of cis-10,trans-12. Residual effects were evaluated from 85 to 112 d in milk (residual period) when cows were fed an 18% crude protein concentrate without added fat. The CLA treatment increased milk production but reduced milk fat concentration from 2.90 to 2.14% and fat production from 437 to 348 g/d. Milk protein concentration increased by 11.5% (2.79 to 3.11%) and production by 19% (422 to 504 g/d) in the cows fed CLA. The CLA treatment decreased milk energy concentration and increased milk volume, resulting in unchanged energy output. Milk production and protein concentration and production were also greater during the residual period for the CLA-treated cows. The CLA treatment reduced production of fatty acids (FA) of all chain lengths, but the larger effect was on short-chain FA, causing a shift toward a greater content of longer chain FA. The CLA treatment increased total milk CLA content by 30% and content of the trans-10,cis-12 CLA isomer by 88%. The CLA treatment tended to decrease the number of days open, suggesting a possible effect on reproduction. Under tropical grazing conditions, in a nutritionally challenging environment, CLA-treated cows decreased milk fat content and secreted the same amount of milk energy by increasing milk volume and milk protein production.


Asunto(s)
Bovinos/fisiología , Dieta/veterinaria , Grasas de la Dieta/administración & dosificación , Suplementos Dietéticos , Lactancia/fisiología , Ácidos Linoleicos Conjugados/administración & dosificación , Leche , Animales , Grasas/análisis , Ácidos Grasos/análisis , Ácidos Grasos no Esterificados/sangre , Femenino , Leche/química , Leche/metabolismo , Proteínas de la Leche/análisis , Reproducción/fisiología , Rumen/metabolismo , Factores de Tiempo , Clima Tropical
15.
J Dairy Sci ; 92(6): 2502-13, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19447981

RESUMEN

Our objective was to determine whether data from a previous study using model milk emulsions to characterize the influence of variation in fatty acid chain length and unsaturation on mid-infrared (MIR) fat predictions could be used to identify a strategy to improve the accuracy of MIR fat predictions on a population of farm milks with a wide variation in fatty acid chain length and unsaturation. The mean fatty acid chain length for 45 farm milks was 14.417 carbons, and the mean unsaturation was 0.337 double bonds per fatty acid. The range of fatty acid chain lengths across the 45 farm milks was 1.23 carbons, and the range in unsaturation was 0.167 double bonds per fatty acid. Fat B (absorbance by the carbon-hydrogen stretch) MIR predictions increased and fat A MIR (absorbance by the ester carbonyl stretch) predictions decreased relative to reference chemistry with increasing fatty acid chain length. When the fat B MIR fat predictions were corrected for sample-to-sample variation in unsaturation, the positive correlation between fat B and fatty acid chain length increased from a coefficient of determination of 0.42 to 0.89. A 45:55 ratio of fat B corrected for unsaturation and fat A gave a smaller standard deviation of the difference between MIR prediction and reference chemistry than any ratio of the fat B (without correction for unsaturation) and fat A or either fat B or fat A alone. This demonstrates the technical feasibility of this approach to improve MIR testing accuracy for fat, if a simple procedure could be developed to determine the unsaturation of fat in milk rapidly and to correct the fat B reading for the effect of unsaturation before being combined with fat A.


Asunto(s)
Grasas/análisis , Ácidos Grasos/química , Tecnología de Alimentos/métodos , Leche/química , Análisis Espectral/normas , Agricultura/métodos , Animales , Tecnología de Alimentos/normas , Valor Predictivo de las Pruebas , Valores de Referencia , Reproducibilidad de los Resultados , Análisis Espectral/métodos
16.
J Dairy Sci ; 92(6): 2534-8, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19447985

RESUMEN

Dietary supplements of conjugated linoleic acid (CLA) containing trans-10, cis-12 CLA reduce milk fat synthesis in lactating goats. This study investigated effects of milk fat depression induced by dietary CLA supplements on the properties of semi-hard goat cheese. Thirty Alpine does were randomly assigned to 1 of 3 groups and fed diets with lipid-encapsulated CLA that provided trans-10, cis-12 CLA at 0 (control), 3 (CLA-1), and 6 g/d (CLA-2). The experiment was a 3 x 3 Latin square design. Periods were 2 wk in length, each separated by 2-wk periods without CLA supplements. Bulk milk was collected on d 3 and 13 of each of 3 periods for cheese manufacture. The largest decrease (23.2%) in milk fat content, induced by the high dosage (6 g/d per doe) of trans-10, cis-12 CLA supplementation at d 13 of treatment, resulted in decreases of cheese yield and moisture of 10.2 and 10.0%, respectively. Although CLA supplementation increased the hardness, springiness, and chewiness, and decreased the cohesiveness and adhesiveness of cheeses, no obvious defects were detected and no significant differences were found in sensory scores among cheeses. In conclusion, milk fat depression induced by a dietary CLA supplement containing trans-10, cis-12 CLA resulted in changes of fat-to-protein ratio in cheese milk and consequently affected properties of semi-hard goat cheese.


Asunto(s)
Queso/análisis , Queso/normas , Suplementos Dietéticos , Grasas/análisis , Ácidos Linoleicos Conjugados/administración & dosificación , Leche/química , Animales , Industria Lechera , Cabras , Humanos , Lactancia , Sensación
17.
J Dairy Sci ; 92(6): 2662-9, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19447999

RESUMEN

The feeding of conjugated linoleic acid (CLA) supplements to early-lactation dairy cows has been shown to decrease milk fat synthesis and possibly improve reproductive performance. However, previously reported studies used too few animals to clearly establish the effect of CLA on reproduction. Our objective was to combine data from these studies to evaluate the association of CLA with time to first ovulation and time to conception using methods of survival analysis and overall success of pregnancy by logistic regression. A database was compiled of individual animal data (n = 212) from 5 controlled studies in which CLA had been supplemented to early-lactation dairy cows. Survival analysis incorporated both semi-parametric models (Cox proportional hazards) and parametric models (log-normal). The probability of cows becoming pregnant increased in a nonlinear manner as trans-10, cis-12 CLA dose increased, with the optimal dose predicted to be 10.1 g/d. At the optimal dose, the probability of pregnancy was increased by 26% compared with those animals receiving no CLA (probability = 91% and 72%, respectively). Similarly, the log-normal model predicted that time to conception was decreased in a nonlinear manner with increasing trans-10, cis-12 CLA dose. The predicted optimal dose was 10.5 g of trans-10, cis-12 CLA/d and at this dose the median time to conception was decreased by 34 d when compared with those cows not receiving CLA (117 vs. 151 d in milk, respectively). The log-normal model was also the best-fit model for time to first ovulation. Overall, this multi-study analysis demonstrated a strong concordance between the nature of the dose response and the predicted optimal dose of trans-10, cis-12 CLA across the 3 reproductive variables evaluated. These results indicate that reproductive performance of dairy cows may be improved by feeding of CLA supplements during early lactation.


Asunto(s)
Bovinos/fisiología , Suplementos Dietéticos , Lactancia/fisiología , Ácidos Linoleicos Conjugados/administración & dosificación , Reproducción/fisiología , Animales , Femenino , Modelos Logísticos , Embarazo , Análisis de Supervivencia
18.
J Dairy Sci ; 91(9): 3291-9, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18765588

RESUMEN

The effect of conjugated linoleic acid (CLA) supplements containing trans-10, cis-12 for reducing milk fat synthesis has been well described in dairy cows and sheep. Studies on lactating goats, however, remain inconclusive. Therefore, the current study investigated the efficacy of a lipid-encapsulated trans-10, cis-12 CLA supplement (LE-CLA) on milk production and milk fatty acid profile in dairy goats. Thirty multiparous Alpine lactating goats in late lactation were used in a 3 x 3 Latin square design (14-d treatment periods separated by 14-d intervals). Does were fed a total mixed ration of Bermuda grass hay, dehydrated alfalfa pellets, and concentrate. Does were randomly allocated to 3 treatments: A) unsupplemented (control), B) supplemented with 30 g/d of LE-CLA (low dose; CLA-1), and C) supplemented with 60 g/d of LE-CLA (high dose; CLA-2). Milk yield, dry matter intake, and milk protein content and yield were unaffected by treatment. Compared with the control, milk fat yield was reduced 8% by the CLA-1 treatment and 21% by the CLA-2 treatment, with milk fat content reduced 5 and 18% by the CLA-1 and CLA-2 treatments, respectively. The reduction in milk fat yield was due to decreases in both de novo fatty acid synthesis and uptake of preformed fatty acids. Milk fat content of trans-10, cis-12 CLA was 0.03, 0.09, and 0.19 g/100 g of fatty acids for the control, CLA-1, and CLA-2 treatments, respectively. The transfer efficiency of trans-10, cis-12 CLA from the 2 levels of CLA supplement into milk fat was not different between treatments and averaged 1.85%. In conclusion, trans-10, cis-12 CLA reduced milk fat synthesis in lactating dairy goats in a manner similar to that observed for lactating dairy cows and dairy sheep. Dose-response comparisons, however, suggest that the degree of reduction in milk fat synthesis is less in dairy goats compared with dairy cows and dairy sheep.


Asunto(s)
Suplementos Dietéticos , Lactancia/efectos de los fármacos , Ácidos Linoleicos Conjugados/farmacología , Lípidos/biosíntesis , Leche/química , Animales , Grasas/análisis , Ácidos Grasos/análisis , Femenino , Cabras , Lactosa/análisis , Ácidos Linoleicos Conjugados/administración & dosificación , Proteínas de la Leche/análisis , Distribución Aleatoria , Factores de Tiempo
19.
J Dairy Sci ; 91(10): 3850-61, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18832207

RESUMEN

Trans fatty acids (FA) arise in ruminant-derived foods as a consequence of rumen biohydrogenation and are of interest because of their biological effects and potential role in chronic human diseases. Our objective was to compare 2 trans FA, elaidic acid (EA; trans-9 18:1) and vaccenic acid (VA; trans-11 18:1), with oleic acid (OA; cis-9 18:1) relative to plasma lipid transport and mammary utilization for milk fat synthesis. Three ruminally cannulated, Holstein dairy cows, 259 +/- 6 DIM (mean +/- SEM), were randomly assigned in a 3 x 3 Latin square design. Treatments were a 4-d abomasal infusion of 1) OA (45.5 g/d), 2) EA (41.7 g/d), and 3) VA (41.4 g/d). Milk samples were collected at each milking and blood samples were collected at the start and end of each treatment period. The proportions of total plasma FA associated with each plasma lipid fraction at baseline (pretreatment) were 62.6 +/- 0.6% phospholipids, 26.1 +/- 0.6% cholesterol esters, 9.8 +/- 0.4% triglycerides, and 1.5 +/- 0.1% nonesterified fatty acids; these values were unaffected by treatment. There were striking differences in the FA composition of the individual plasma lipid fractions and in the distribution of specific 18-carbon FA among the lipid fractions. Infusion of treatment isomers caused their specific increase in the various plasma lipid fractions but had no effect on milk production variables, including milk fat yield and content. Transfer efficiency of infused OA, EA, and VA to milk fat averaged 65.5 +/- 3.0%, 59.7 +/- 1.5%, and 54.3 +/- 0.6%, respectively. For the VA infusion, 24.6 +/- 1.1% of the transfer was accounted for by the increased yield of cis-9, trans-11 conjugated linoleic acid in milk fat, consistent with its endogenous synthesis from VA via the mammary enzyme Delta(9)-desaturase. Notably, linoleic acid (18:2n-6) and linolenic acid (18:3n-3) accounted for 47.7% of total plasma FA, but only 2.6% of FA in milk. Overall, results demonstrate clear differences in plasma transport and mammary uptake and utilization of 18-carbon FA, and these relate to the location, orientation, and number of double bonds.


Asunto(s)
Bovinos/fisiología , Lactancia/metabolismo , Ácidos Esteáricos/metabolismo , Animales , Bovinos/metabolismo , Ingestión de Alimentos/fisiología , Ácidos Grasos/análisis , Ácidos Grasos/sangre , Ácidos Grasos/química , Femenino , Lípidos/sangre , Leche/química , Fosfolípidos/sangre , Distribución Aleatoria
20.
J Dairy Sci ; 90(7): 3326-35, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17582118

RESUMEN

Trans-10, cis-12 conjugated linoleic acid (CLA) reduces milk fat synthesis in sheep in a manner similar to that seen in dairy cows, but its effects on cheese yield and flavor are unknown. Additionally, when dietary energy supply is restricted, CLA can increase milk and milk protein yield, which may alter cheese yield and eating quality. The objectives of the study were to examine the effects of supplementing ewe diets with a rumen-protected source of CLA at a high and low dietary energy intake on milk fat and protein synthesis and on cheese yield and eating quality. Sixteen multiparous ewes were randomly allocated to 1 of 4 dietary treatments: a high (6.7 Mcal of metabolizable energy/d) or low (5.0 Mcal of metabolizable energy/d) feeding level that was either unsupplemented or supplemented with 25 g/d of a lipid-encapsulated CLA (to provide 2.4 g/d of CLA) in each of 4 periods of 21 d duration in a 4 x 4 Latin square design. There was no effect of treatment on milk yield (g/d), but milk fat percentage and milk fat yield were reduced by 23 and 20%, respectively, in ewes supplemented with CLA. Milk fatty acid concentration (g/100 g) of chain length < C16 was decreased and > C16 was increased in milk and cheese following CLA supplementation, whereas decreasing the feeding level increased fatty acids > or = C16. Milk fat contents of CLA were 0.01 and 0.12 g/100 g of fatty acids for the unsupplemented and CLA-supplemented treatments, respectively, whereas cis-9, trans-11 CLA was unaffected by CLA supplementation. There was no main effect of treatment on cheese yield, which was 0.11 +/- 0.001 kg of cheese/kg of milk, but cheese yield was highest, at 0.12 +/- 0.001 kg/kg, when made from milk of ewes fed the high feeding level + unsupplemented treatment. Cheese made from the milk of ewes supplemented with CLA, compared with the unsupplemented diet, was rated (scale 0 to 10) higher in the creaminess (2.1 vs. 1.4; SEM 0.15) and less oily (0.8 vs. 1.3; SEM 0.17) attributes, and was preferred overall (4.5 vs. 3.9; SEM 0.21). Cheese produced from sheep on the high vs. low feed level was rated less yellow (2.8 vs. 4.2; SEM 0.11), less salty (1.9 vs. 2.3; SEM 0.15), and more sour (1.5 vs. 1.1; SEM 0.13). We concluded that the effect of feeding level on animal performance and cheese characteristics was small, whereas supplementing the diets of ewes with a ruminally protected CLA source reduced milk fat yield, did not affect cheese yield, and beneficially altered the flavor characteristics of the cheese.


Asunto(s)
Queso , Suplementos Dietéticos , Ácidos Linoleicos Conjugados/administración & dosificación , Lípidos/biosíntesis , Leche/química , Ovinos/fisiología , Alimentación Animal/análisis , Animales , Queso/análisis , Dieta/veterinaria , Grasas/análisis , Femenino , Leche/efectos de los fármacos , Proteínas de la Leche/análisis , Distribución Aleatoria , Ovinos/metabolismo , Gusto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA