RESUMEN
Remote coral reefs are thought to be more resilient to climate change due to their isolation from local stressors like fishing and pollution. We tested this hypothesis by measuring the relationship between local human influence and coral community resilience. Surprisingly, we found no relationship between human influence and resistance to disturbance and some evidence that areas with greater human development may recover from disturbance faster than their more isolated counterparts. Our results suggest remote coral reefs are imperiled by climate change, like so many other geographically isolated ecosystems, and are unlikely to serve as effective biodiversity arks. Only drastic and rapid cuts in greenhouse gas emissions will ensure coral survival. Our results also indicate that some reefs close to large human populations were relatively resilient. Focusing research and conservation resources on these more accessible locations has the potential to provide new insights and maximize conservation outcomes.
Asunto(s)
Antozoos , Arrecifes de Coral , Animales , Cambio Climático , Conservación de los Recursos Naturales , Ecosistema , Humanos , CazaRESUMEN
Anthropogenic global change and local stressors are impacting coral growth and survival worldwide, altering the structure and function of coral reef ecosystems. Here, we show that skeletal extension rates of nearshore colonies of two abundant and widespread Caribbean corals (Siderastrea siderea, Pseudodiploria strigosa) declined across the Belize Mesoamerican Barrier Reef System (MBRS) over the past century, while offshore coral conspecifics exhibited relatively stable extension rates over the same temporal interval. This decline has caused nearshore coral extension rates to converge with those of their historically slower growing offshore coral counterparts. For both species, individual mass coral bleaching events were correlated with low rates of skeletal extension within specific reef environments, but no single bleaching event was correlated with low skeletal extension rates across all reef environments. We postulate that the decline in skeletal extension rates for nearshore corals is driven primarily by the combined effects of long-term ocean warming and increasing exposure to higher levels of land-based anthropogenic stressors, with acute thermally induced bleaching events playing a lesser role. If these declining trends in skeletal growth of nearshore S. siderea and P. strigosa continue into the future, the structure and function of these critical nearshore MBRS coral reef systems is likely to be severely impaired.
Asunto(s)
Antozoos , Animales , Belice , Región del Caribe , Arrecifes de Coral , EcosistemaRESUMEN
Through the continuous growth of their carbonate skeletons, corals record information about past environmental conditions and their effect on colony fitness. Here, we characterize century-scale growth records of inner and outer reef corals across ~200 km of the Florida Keys Reef Tract (FKRT) using skeletal cores extracted from two ubiquitous reef-building species, Siderastrea siderea and Pseudodiploria strigosa. We find that corals across the FKRT have sustained extension and calcification rates over the past century but have experienced a long-term reduction in skeletal density, regardless of reef zone. Notably, P. strigosa colonies exhibit temporary reef zone-dependent reductions in extension rate corresponding to two known extreme temperature events in 1969-1970 and 1997-1998. We propose that the subtropical climate of the FKRT may buffer corals from chronic growth declines associated with climate warming, though the significant reduction in skeletal density may indicate underlying vulnerability to present and future trends in ocean acidification.
Asunto(s)
Antozoos/crecimiento & desarrollo , Arrecifes de Coral , Calentamiento Global , Animales , Calcificación Fisiológica , Clima , Florida , Calor , Estudios LongitudinalesRESUMEN
Mass bleaching events are predicted to occur annually later this century. Nevertheless, it remains unknown whether corals will be able to recover between annual bleaching events. Using a combined tank and field experiment, we simulated annual bleaching by exposing three Caribbean coral species (Porites divaricata, Porites astreoides and Orbicella faveolata) to elevated temperatures for 2.5 weeks in 2 consecutive years. The impact of annual bleaching stress on chlorophyll a, energy reserves, calcification, and tissue C and N isotopes was assessed immediately after the second bleaching and after both short- and long-term recovery on the reef (1.5 and 11 months, respectively). While P. divaricata and O. faveolata were able to recover from repeat bleaching within 1 year, P. astreoides experienced cumulative damage that prevented full recovery within this time frame, suggesting that repeat bleaching had diminished its recovery capacity. Specifically, P. astreoides was not able to recover protein and carbohydrate concentrations. As energy reserves promote bleaching resistance, failure to recover from annual bleaching within 1 year will likely result in the future demise of heat-sensitive coral species.
Asunto(s)
Antozoos/fisiología , Calor/efectos adversos , Longevidad , Animales , Calcificación Fisiológica , Isótopos de Carbono/metabolismo , Región del Caribe , Clorofila/metabolismo , Clorofila A , Metabolismo Energético , México , Isótopos de Nitrógeno/metabolismo , Estaciones del Año , Especificidad de la EspecieRESUMEN
The worldwide decline of coral reefs has renewed interest in coral communities at the edge of environmental limits because they have the potential to serve as resilience hotspots and climate change refugia, and can provide insights into how coral reefs might function in future ocean conditions. These coral communities are often referred to as marginal or extreme but few definitions exist and usage of these terms has therefore been inconsistent. This creates significant challenges for categorising these often poorly studied communities and synthesising data across locations. Furthermore, this impedes our understanding of how coral communities can persist at the edge of their environmental limits and the lessons they provide for future coral reef survival. Here, we propose that marginal and extreme coral communities are related but distinct and provide a novel conceptual framework to redefine them. Specifically, we define coral reef extremeness solely based on environmental conditions (i.e., large deviations from optimal conditions in terms of mean and/or variance) and marginality solely based on ecological criteria (i.e., altered community composition and/or ecosystem functioning). This joint but independent assessment of environmental and ecological criteria is critical to avoid common pitfalls where coral communities existing outside the presumed optimal conditions for coral reef development are automatically considered inferior to coral reefs in more traditional settings. We further evaluate the differential potential of marginal and extreme coral communities to serve as natural laboratories, resilience hotspots and climate change refugia, and discuss strategies for their conservation and management as well as priorities for future research. Our new classification framework provides an important tool to improve our understanding of how corals can persist at the edge of their environmental limits and how we can leverage this knowledge to optimise strategies for coral reef conservation, restoration and management in a rapidly changing ocean.
Asunto(s)
Antozoos , Animales , Ecosistema , Arrecifes de Coral , Cambio Climático , Refugio de FaunaRESUMEN
Ocean plastic pollution is a global problem that causes ecosystem degradation. Crucial knowledge gaps exist concerning patterns in microfiber abundance across regions and ecosystems, as well as the role of these pollutants within the environment. Here, we quantified the abundance of microfibers in coral samples collected from the Belize Mesoamerican Barrier Reef System (MBRS) using a polarized light microscope and identified a subsample of these to the polymer level using an Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy microscope. Microfibers were found in all coral samples with rayon being identified as the most common microfiber, comprising 85% of quantified pollutants. We found a greater average abundance of microfibers in coral samples from the Sapodilla Cayes (296 ± SE 89) than in samples from the Drowned Cayes (75 ± SE 14), indicating spatial variation in microfiber abundance within coral tissue along the MBRS. These results demonstrate that corals on the Belize MBRS interact with microfibers and that microfiber abundance on reefs varies spatially due to point sources of pollution and local oceanography. As rayon from clothing typically enters the ocean through wastewater effluent, alterations to waste water infrastructure may prove useful in decreasing rayon pollution in coastal waters.
Asunto(s)
Antozoos , Animales , Belice , Arrecifes de Coral , Ecosistema , PlásticosRESUMEN
Coral reefs are increasingly threatened by global and local anthropogenic stressors such as rising seawater temperature, nutrient enrichment, sedimentation, and overfishing. Although many studies have investigated the impacts of local and global stressors on coral reefs, we still do not fully understand how these stressors influence coral community structure, particularly across environmental gradients on a reef system. Here, we investigate coral community composition across three different temperature and productivity regimes along a nearshore-offshore gradient on lagoonal reefs of the Belize Mesoamerican Barrier Reef System (MBRS). A novel metric was developed using ultra-high-resolution satellite-derived estimates of sea surface temperatures (SST) to classify reefs as exposed to low (lowTP), moderate (modTP), or high (highTP) temperature parameters over 10 years (2003 to 2012). Coral species richness, abundance, diversity, density, and percent cover were lower at highTP sites relative to lowTP and modTP sites, but these coral community traits did not differ significantly between lowTP and modTP sites. Analysis of coral life history strategies revealed that highTP sites were dominated by hardy stress-tolerant and fast-growing weedy coral species, while lowTP and modTP sites consisted of competitive, generalist, weedy, and stress-tolerant coral species. Satellite-derived estimates of Chlorophyll-a (chl-a) were obtained for 13-years (2003-2015) as a proxy for primary production. Chl-a concentrations were highest at highTP sites, medial at modTP sites, and lowest at lowTP sites. Notably, thermal parameters correlated better with coral community traits between site types than productivity, suggesting that temperature (specifically number of days above the thermal bleaching threshold) played a greater role in defining coral community structure than productivity on the MBRS. Dominance of weedy and stress-tolerant genera at highTP sites suggests that corals utilizing these two life history strategies may be better suited to cope with warmer oceans and thus may warrant protective status under climate change.
Asunto(s)
Antozoos/fisiología , Arrecifes de Coral , Monitoreo del Ambiente , Temperatura , Animales , Belice , Clorofila/análisis , Clorofila A , Geografía , Océanos y MaresRESUMEN
Anthropogenic increases in atmospheric carbon dioxide concentration have caused global average sea surface temperature (SST) to increase by approximately 0.11°C per decade between 1971 and 2010 - a trend that is projected to continue through the 21st century. A multitude of research studies have demonstrated that increased SSTs compromise the coral holobiont (cnidarian host and its symbiotic algae) by reducing both host calcification and symbiont density, among other variables. However, we still do not fully understand the role of heterotrophy in the response of the coral holobiont to elevated temperature, particularly for temperate corals. Here, we conducted a pair of independent experiments to investigate the influence of heterotrophy on the response of the temperate scleractinian coral Oculina arbuscula to thermal stress. Colonies of O. arbuscula from Radio Island, North Carolina, were exposed to four feeding treatments (zero, low, moderate, and high concentrations of newly hatched Artemia sp. nauplii) across two independent temperature experiments (average annual SST (20°C) and average summer temperature (28°C) for the interval 2005-2012) to quantify the effects of heterotrophy on coral skeletal growth and symbiont density. Results suggest that heterotrophy mitigated both reduced skeletal growth and decreased symbiont density observed for unfed corals reared at 28°C. This study highlights the importance of heterotrophy in maintaining coral holobiont fitness under thermal stress and has important implications for the interpretation of coral response to climate change.
RESUMEN
Reliably predicting how coral calcification may respond to ocean acidification and warming depends on our understanding of coral calcification mechanisms. However, the concentration and speciation of dissolved inorganic carbon (DIC) inside corals remain unclear, as only pH has been measured while a necessary second parameter to constrain carbonate chemistry has been missing. Here we report the first carbonate ion concentration ([CO3(2-)]) measurements together with pH inside corals during the light period. We observe sharp increases in [CO3(2-)] and pH from the gastric cavity to the calcifying fluid, confirming the existence of a proton (H(+)) pumping mechanism. We also show that corals can achieve a high aragonite saturation state (Ωarag) in the calcifying fluid by elevating pH while at the same time keeping [DIC] low. Such a mechanism may require less H(+)-pumping and energy for upregulating pH compared with the high [DIC] scenario and thus may allow corals to be more resistant to climate change related stressors.
Asunto(s)
Antozoos/química , Carbonatos/análisis , Microelectrodos , Animales , Concentración de Iones de HidrógenoRESUMEN
The physiological response to individual and combined stressors of elevated temperature and pCO2 were measured over a 24-day period in four Pacific corals and their respective symbionts (Acropora millepora/Symbiodinium C21a, Pocillopora damicornis/Symbiodinium C1c-d-t, Montipora monasteriata/Symbiodinium C15, and Turbinaria reniformis/Symbiodinium trenchii). Multivariate analyses indicated that elevated temperature played a greater role in altering physiological response, with the greatest degree of change occurring within M. monasteriata and T. reniformis. Algal cellular volume, protein, and lipid content all increased for M. monasteriata. Likewise, S. trenchii volume and protein content in T. reniformis also increased with temperature. Despite decreases in maximal photochemical efficiency, few changes in biochemical composition (i.e. lipids, proteins, and carbohydrates) or cellular volume occurred at high temperature in the two thermally sensitive symbionts C21a and C1c-d-t. Intracellular carbonic anhydrase transcript abundance increased with temperature in A. millepora but not in P. damicornis, possibly reflecting differences in host mitigated carbon supply during thermal stress. Importantly, our results show that the host and symbiont response to climate change differs considerably across species and that greater physiological plasticity in response to elevated temperature may be an important strategy distinguishing thermally tolerant vs. thermally sensitive species.
Asunto(s)
Antozoos/crecimiento & desarrollo , Dióxido de Carbono/metabolismo , Modelos Biológicos , Simbiosis/fisiología , Animales , Océano PacíficoRESUMEN
Rising atmospheric CO2 concentrations threaten coral reefs globally by causing ocean acidification (OA) and warming. Yet, the combined effects of elevated pCO2 and temperature on coral physiology and resilience remain poorly understood. While coral calcification and energy reserves are important health indicators, no studies to date have measured energy reserve pools (i.e., lipid, protein, and carbohydrate) together with calcification under OA conditions under different temperature scenarios. Four coral species, Acropora millepora, Montipora monasteriata, Pocillopora damicornis, Turbinaria reniformis, were reared under a total of six conditions for 3.5 weeks, representing three pCO2 levels (382, 607, 741 µatm), and two temperature regimes (26.5, 29.0 °C) within each pCO2 level. After one month under experimental conditions, only A. millepora decreased calcification (-53%) in response to seawater pCO2 expected by the end of this century, whereas the other three species maintained calcification rates even when both pCO2 and temperature were elevated. Coral energy reserves showed mixed responses to elevated pCO2 and temperature, and were either unaffected or displayed nonlinear responses with both the lowest and highest concentrations often observed at the mid-pCO2 level of 607 µatm. Biweekly feeding may have helped corals maintain calcification rates and energy reserves under these conditions. Temperature often modulated the response of many aspects of coral physiology to OA, and both mitigated and worsened pCO2 effects. This demonstrates for the first time that coral energy reserves are generally not metabolized to sustain calcification under OA, which has important implications for coral health and bleaching resilience in a high-CO2 world. Overall, these findings suggest that some corals could be more resistant to simultaneously warming and acidifying oceans than previously expected.