Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Exp Biol ; 223(Pt 20)2020 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-32895322

RESUMEN

Color and spatial vision is critical for recognition and discrimination tasks affecting fitness, including finding food and mates, and recognizing offspring. For example, as a counter defense to avoid the cost of raising the unrelated offspring of obligate interspecific avian brood parasites, many host species routinely view, recognize and remove the foreign egg(s) from their nests. Recent research has shown that host species visually attend to both chromatic and spatial pattern features of eggs; yet how hosts simultaneously integrate these features together when recognizing eggs remains an open question. Here, we tested egg rejection responses of American robins (Turdus migratorius) using a range of 3D-printed model eggs covered with blue and yellow checkered patterns differing in relative square sizes. We predicted that robins would reject a model egg if they could visually resolve the blue and yellow squares as separate features, or accept it if the squares blended together and appeared similar in color to the natural blue-green color of robin eggs as perceived by the avian visual system. As predicted, the probability of robins rejecting a model egg increased with greater sizes of its blue and yellow squares. Our results suggest that chromatic visual acuity and viewing distance have the potential to limit the ability of a bird to recognize a foreign egg in its nest, thus providing a limitation to host egg recognition that obligate interspecific avian brood parasites may exploit.


Asunto(s)
Passeriformes , Pájaros Cantores , Animales , Huevos , Interacciones Huésped-Parásitos , Comportamiento de Nidificación , Óvulo , Estados Unidos , Agudeza Visual
2.
Brain Behav Evol ; 83(3): 181-98, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24663005

RESUMEN

Several species of the most diverse avian order, Passeriformes, specialize in foraging on passive prey, although relatively little is known about their visual systems. We tested whether some components of the visual system of the American goldfinch (Spinus tristis), a granivorous bird, followed the profile of species seeking passive food items (small eye size relative to body mass, narrow binocular fields and blind areas, centrally located retinal specialization projecting laterally, ultraviolet-sensitive vision). We measured eye size, visual field configuration, the degree of eye movement, variations in the density of ganglion cells and cone photoreceptors, and the sensitivity of photoreceptor visual pigments and oil droplets. Goldfinches had relatively large binocular (46°) and lateral (134°) visual fields with a high degree of eye movement (66° at the plane of the bill). They had a single centrotemporally located fovea that projects laterally, but can be moved closer to the edge of the binocular field by converging the eyes. Goldfinches could also increase their panoramic vision by diverging their eyes while handling food items in head-up positions. The distribution of photoreceptors indicated that the highest density of single and double cones was surrounding the fovea, making it the center of chromatic and achromatic vision and motion detection. Goldfinches possessed a tetrachromatic ultraviolet visual system with visual pigment peak sensitivities of 399 nm (ultraviolet-sensitive cone), 442 nm (short-wavelength-sensitive cone), 512 nm (medium-wavelength-sensitive cone), and 580 nm (long-wavelength-sensitive cone). Overall, the visual system of American goldfinches showed characteristics of passive as well as active prey foragers, with a single-fovea configuration and a large degree of eye movement that would enhance food searching and handling with their relatively wide binocular fields.


Asunto(s)
Pinzones/anatomía & histología , Pinzones/fisiología , Células Fotorreceptoras de Vertebrados/fisiología , Retina/anatomía & histología , Retina/fisiología , Visión Ocular/fisiología , Animales , Conducta Apetitiva , Tamaño Corporal , Recuento de Células , Movimientos Oculares/fisiología , Femenino , Fóvea Central/anatomía & histología , Fóvea Central/fisiología , Masculino , Microespectrofotometría , Movimiento (Física) , Tamaño de los Órganos , Células Fotorreceptoras de Vertebrados/citología , Células Fotorreceptoras Retinianas Conos/citología , Células Fotorreceptoras Retinianas Conos/fisiología , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/fisiología , Pigmentos Retinianos/metabolismo , Umbral Sensorial/fisiología , Rayos Ultravioleta , Campos Visuales/fisiología
3.
PeerJ ; 11: e16379, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38025716

RESUMEN

Collisions between birds and aircraft cause bird mortality, economic damage, and aviation safety hazards. One proposed solution to increasing the distance at which birds detect and move away from an approaching aircraft, ultimately mitigating the probability of collision, is through onboard lighting systems. Lights in vehicles have been shown to lead to earlier reactions in some bird species but they could also generate attraction, potentially increasing the probability of collision. Using information on the visual system of the Canada goose (Branta canadensis), we developed light stimuli of high chromatic contrast to their eyes. We then conducted a controlled behavioral experiment (i.e., single-choice test) to assess the avoidance or attraction responses of Canada geese to LED lights of different wavelengths (blue, 483 nm; red, 631 nm) and pulsing frequencies (steady, pulsing at 2 Hz). Overall, Canada geese tended to avoid the blue light and move towards the red light; however, these responses depended heavily on light exposure order. At the beginning of the experiment, geese tended to avoid the red light. After further exposure the birds developed an attraction to the red light, consistent with the mere exposure effect. The response to the blue light generally followed a U-shape relationship (avoidance, attraction, avoidance) with increasing number of exposures, again consistent with the mere exposure effect, but followed by the satiation effect. Lights pulsing at 2 Hz enhanced avoidance responses under high ambient light conditions; whereas steady lights enhanced avoidance responses under dim ambient light conditions. Our results have implications for the design of lighting systems aimed at mitigating collisions between birds and human objects. LED lights in the blue portion of the spectrum are good candidates for deterrents and lights in the red portion of the spectrum may be counterproductive given the attraction effects with increasing exposure. Additionally, consideration should be given to systems that automatically modify pulsing of the light depending on ambient light intensity to enhance avoidance.


Asunto(s)
Gansos , Luz , Animales , Humanos , Gansos/fisiología , Ojo , Iluminación/efectos adversos , Patos , Canadá
4.
J Exp Biol ; 215(Pt 19): 3442-52, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-22956248

RESUMEN

Color vision is not uniform across the retina because of differences in photoreceptor density and distribution. Retinal areas with a high density of cone photoreceptors may overlap with those with a high density of ganglion cells, increasing hue discrimination. However, there are some exceptions to this cell distribution pattern, particularly in species with horizontal visual streaks (bands of high ganglion cell density across the retina) that live in open habitats. We studied the spectral sensitivity and distribution of cone photoreceptors involved in chromatic and achromatic vision in the Canada goose (Branta canadiensis), which possesses an oblique rather than horizontal visual streak at the ganglion cell layer. Using microspectrophotometry, we found that the Canada goose has a violet-sensitive visual system with four visual pigments with absorbance peaks at 409, 458, 509 and 580 nm. The density of most cones involved in chromatic and achromatic vision peaked along a band across the retina that matched the oblique orientation of the visual streak. With the information on visual sensitivity, we calculated chromatic and achromatic contrasts of different goose plumage regions. The regions with the highest visual saliency (cheek, crown, neck and upper tail coverts) were the ones involved in visual displays to maintain flock cohesion. The Canada goose oblique visual streak is the retinal center for chromatic and achromatic vision, allowing individuals to sample the sky and the ground simultaneously or the horizon depending on head position. Overall, our results show that the Canada goose visual system has features that make it rather different from that of other vertebrates living in open habitats.


Asunto(s)
Conducta Animal/fisiología , Visión de Colores/fisiología , Sensibilidad de Contraste/fisiología , Ecosistema , Gansos/fisiología , Células Fotorreceptoras de Vertebrados/metabolismo , Animales , Recuento de Células , Visión de Colores/efectos de la radiación , Sensibilidad de Contraste/efectos de la radiación , Plumas/fisiología , Luz , Microespectrofotometría , Células Fotorreceptoras de Vertebrados/citología , Células Fotorreceptoras de Vertebrados/efectos de la radiación , Células Fotorreceptoras Retinianas Conos/citología , Células Fotorreceptoras Retinianas Conos/metabolismo , Pigmentos Retinianos/metabolismo
5.
Conserv Physiol ; 10(1): coac059, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36134144

RESUMEN

Development of wind energy facilities results in interactions between wildlife and wind turbines. Raptors, including bald and golden eagles, are among the species known to incur mortality from these interactions. Several alerting technologies have been proposed to mitigate this mortality by increasing eagle avoidance of wind energy facilities. However, there has been little attempt to match signals used as alerting stimuli with the sensory capabilities of target species like eagles. One potential approach to tuning signals is to use sensory physiology to determine what stimuli the target eagle species are sensitive to even in the presence of background noise, thereby allowing the development of a maximally stimulating signal. To this end, we measured auditory evoked potentials of bald and golden eagles to determine what types of sounds eagles can process well, especially in noisy conditions. We found that golden eagles are significantly worse than bald eagles at processing rapid frequency changes in sounds, but also that noise effects on hearing in both species are minimal in response to rapidly changing sounds. Our findings therefore suggest that sounds of intermediate complexity may be ideal both for targeting bald and golden eagle hearing and for ensuring high stimulation in noisy field conditions. These results suggest that the sensory physiology of target species is likely an important consideration when selecting auditory alerting sounds and may provide important insight into what sounds have a reasonable probability of success in field applications under variable conditions and background noise.

6.
Sci Rep ; 11(1): 21655, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34737377

RESUMEN

A challenge that conservation practitioners face is manipulating behavior of nuisance species. The turkey vulture (Cathartes aura) can cause substantial damage to aircraft if struck. The goal of this study was to assess vulture responses to unmanned aircraft systems (UAS) for use as a possible dispersal tool. Our treatments included three platforms (fixed-wing, multirotor, and a predator-like ornithopter [powered by flapping flight]) and two approach types (30 m overhead or targeted towards a vulture) in an operational context. We evaluated perceived risk as probability of reaction, reaction time, flight-initiation distance (FID), vulture remaining index, and latency to return. Vultures escaped sooner in response to the fixed-wing; however, fewer remained after multirotor treatments. Targeted approaches were perceived as riskier than overhead. Vulture perceived risk was enhanced by flying the multirotor in a targeted approach. We found no effect of our treatments on FID or latency to return. Latency was negatively correlated with UAS speed, perhaps because slower UAS spent more time over the area. Greatest visual saliency followed as: ornithopter, fixed-wing, and multirotor. Despite its appearance, the ornithopter was not effective at dispersing vultures. Because effectiveness varied, multirotor/fixed-wing UAS use should be informed by management goals (immediate dispersal versus latency).

7.
Sci Rep ; 9(1): 15230, 2019 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-31645645

RESUMEN

The keen visual systems of birds have been relatively well-studied. The foundations of avian vision rest on their cone and rod photoreceptors. Most birds use four cone photoreceptor types for color vision, a fifth cone for achromatic tasks, and a rod for dim-light vision. The cones, along with their oil droplets, and rods are conserved across birds - with the exception of a few shifts in spectral sensitivity - despite taxonomic, behavioral and ecological differences. Here, however, we describe a novel photoreceptor organelle in a group of New World flycatchers (Empidonax spp.) in which the traditional oil droplet is replaced with a complex of electron-dense megamitochondria surrounded by hundreds of small, orange oil droplets. The photoreceptors with this organelle were unevenly distributed across the retina, being present in the central region (including in the fovea), but absent from the retinal periphery and the area temporalis of these insectivorous birds. Of the many bird species with their photoreceptors characterized, only the two flycatchers described here (E. virescens and E. minimus) possess this unusual retinal structure. We discuss the potential functional significance of this unique sub-cellular structure, which might provide an additional visual channel for these small predatory songbirds.


Asunto(s)
Células Fotorreceptoras de Vertebrados/ultraestructura , Retina/ultraestructura , Pájaros Cantores/anatomía & histología , Animales , Células Fotorreceptoras de Vertebrados/citología , Células Fotorreceptoras de Vertebrados/metabolismo , Filogenia , Retina/citología , Retina/metabolismo , Células Fotorreceptoras Retinianas Conos/citología , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Conos/ultraestructura , Pájaros Cantores/genética
8.
PeerJ ; 6: e5404, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30280013

RESUMEN

BACKGROUND: Avian collisions with man-made objects and vehicles (e.g., buildings, cars, airplanes, power lines) have increased recently. Lights have been proposed to alert birds and minimize the chances of collisions, but it is challenging to choose lights that are tuned to the avian eye and can also lead to avoidance given the differences between human and avian vision. We propose a choice test to address this problem by first identifying wavelengths of light that would over-stimulate the retina using species-specific perceptual models and by then assessing the avoidance/attraction responses of brown-headed cowbirds to these lights during daytime using a behavioral assay. METHODS: We used perceptual models to estimate wavelength-specific light emitting diode (LED) lights with high chromatic contrast. The behavioral assay consisted of an arena where the bird moved in a single direction and was forced to make a choice (right/left) using a single-choice design (one side with the light on, the other with the light off) under diurnal light conditions. RESULTS: First, we identified lights with high saliency from the cowbird visual perspective: LED lights with peaks at 380 nm (ultraviolet), 470 nm (blue), 525 nm (green), 630 nm (red), and broad-spectrum (white) LED lights. Second, we found that cowbirds significantly avoided LED lights with peaks at 470 and 630 nm, but did not avoid or prefer LED lights with peaks at 380 and 525 nm or white lights. DISCUSSION: The two lights avoided had the highest chromatic contrast but relatively lower levels of achromatic contrast. Our approach can optimize limited resources to narrow down wavelengths of light with high visual saliency for a target species leading to avoidance. These lights can be used as candidates for visual deterrents to reduce collisions with man-made objects and vehicles.

9.
PLoS One ; 8(3): e58985, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23544049

RESUMEN

BACKGROUND: Male and female avian brood parasites are subject to different selection pressures: males compete for mates but do not provide parental care or territories and only females locate hosts to lay eggs. This sex difference may affect brain architecture in some avian brood parasites, but relatively little is known about their sensory systems and behaviors used to obtain sensory information. Our goal was to study the visual resolution and visual information gathering behavior (i.e., scanning) of brown-headed cowbirds. METHODOLOGY/PRINCIPAL FINDINGS: We measured the density of single cone photoreceptors, associated with chromatic vision, and double cone photoreceptors, associated with motion detection and achromatic vision. We also measured head movement rates, as indicators of visual information gathering behavior, when exposed to an object. We found that females had significantly lower density of single and double cones than males around the fovea and in the periphery of the retina. Additionally, females had significantly higher head-movement rates than males. CONCLUSIONS: Overall, we suggest that female cowbirds have lower chromatic and achromatic visual resolution than males (without sex differences in visual contrast perception). Females might compensate for the lower visual resolution by gazing alternatively with both foveae in quicker succession than males, increasing their head movement rates. However, other physiological factors may have influenced the behavioral differences observed. Our results bring up relevant questions about the sensory basis of sex differences in behavior. One possibility is that female and male cowbirds differentially allocate costly sensory resources, as a recent study found that females actually have greater auditory resolution than males.


Asunto(s)
Comportamiento de Nidificación/fisiología , Parásitos/fisiología , Passeriformes/fisiología , Células Fotorreceptoras de Vertebrados/fisiología , Caracteres Sexuales , Animales , Peso Corporal , Ojo/anatomía & histología , Femenino , Movimientos de la Cabeza , Modelos Lineales , Masculino , Tamaño de los Órganos , Parásitos/anatomía & histología , Passeriformes/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA