Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(11)2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34073992

RESUMEN

Angiogenesis is an active process, regulating new vessel growth, and is crucial for the survival and growth of tumours next to other complex factors in the tumour microenvironment. We present possible molecular imaging approaches for tumour vascularisation and vitality, focusing on radiopharmaceuticals (tracers). Molecular imaging in general has become an integrated part of cancer therapy, by bringing relevant insights on tumour angiogenic status. After a structured PubMed search, the resulting publication list was screened for oncology related publications in animals and humans, disregarding any cardiovascular findings. The tracers identified can be subdivided into direct targeting of angiogenesis (i.e., vascular endothelial growth factor, laminin, and fibronectin) and indirect targeting (i.e., glucose metabolism, hypoxia, and matrix metallo-proteases, PSMA). Presenting pre-clinical and clinical data of most tracers proposed in the literature, the indirect targeting agents are not 1:1 correlated with angiogenesis factors but do have a strong prognostic power in a clinical setting, while direct targeting agents show most potential and specificity for assessing tumour vascularisation and vitality. Within the direct agents, the combination of multiple targeting tracers into one agent (multimers) seems most promising. This review demonstrates the present clinical applicability of indirect agents, but also the need for more extensive research in the field of direct targeting of angiogenesis in oncology. Although there is currently no direct tracer that can be singled out, the RGD tracer family seems to show the highest potential therefore we expect one of them to enter the clinical routine.


Asunto(s)
Oncología Médica/métodos , Imagen Molecular/métodos , Neoplasias/diagnóstico por imagen , Neovascularización Patológica/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Tomografía Computarizada de Emisión de Fotón Único/métodos , Animales , Biomarcadores de Tumor/metabolismo , Hipoxia de la Célula , Glucosa/metabolismo , Humanos , Integrinas/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Oncología Médica/instrumentación , Neoplasias/patología , Neovascularización Patológica/patología , Oligopéptidos/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
2.
Methods ; 130: 105-113, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28529065

RESUMEN

PURPOSE: Brown adipose tissue (BAT) research has evolved from an underestimated to a fast developing field. Its assumed curing properties for the world wide epidemic obesity, and its related diseases, makes this tissue an interesting target for a broad amount of non-invasive molecular BAT tracers. Apart from 18F-FDG PET/CT there are several methods to detect BAT and measure its metabolism in a more appropriate way. Especially interesting is the measure of lipid turnover, because fatty acids comprise the main fuel for active BAT. This review outlines different imaging modalities suitable for BAT imaging with the overall goal to explain the yet not completely understood mechanism in BAT and its quantitative contribution to whole body lipid and energy metabolism. METHODS: Publications with focus on brown adipose tissue and lipid metabolism imaging are analyzed, different imaging approaches are introduced and promising BAT tracers are presented. RESULTS: Radiolabelled and fluorescent fatty acids, labelled particles, 3H-Triolein and ADIFAB staining can give information about the inflow and therefore about the utilization of fatty acids which represents the activation state in vivo/in vitro. Non-invasive scanning with CT or MRI is a useful addition to those techniques. CONCLUSION: Lipid metabolism imaging offers the opportunity to visualize and quantify yet undiscovered aspects of BAT metabolic activities and is key to completely clarify its role in whole body lipid and energy metabolism.


Asunto(s)
Tejido Adiposo Pardo/diagnóstico por imagen , Tejido Adiposo Pardo/metabolismo , Fluorodesoxiglucosa F18/metabolismo , Metabolismo de los Lípidos/fisiología , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Animales , Metabolismo Energético/fisiología , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/tendencias
3.
Methods ; 130: 90-104, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28602809

RESUMEN

Atherosclerotic events are usually acute and often strike otherwise asymptomatic patients. Although multiple clinical risk factors have been associated with atherosclerosis, as of yet no further individual prediction can be made as to who will suffer from its consequences based on biomarker analysis or traditional imaging methods like CT, MRI or angiography. Previously, non-invasive imaging with 18F-fluorodeoxyglucose (18F-FDG) PET was shown to potentially fill this niche as it offers high sensitive detection of metabolic processes associated with inflammatory changes in atherosclerotic plaques. However, 18F-FDG PET imaging of arterial vessels suffers from non-specificity and has still to be proven to reliably identify vulnerable plaques, carrying a high risk of rupture. Therefore, it may be regarded only as a secondary marker for monitoring treatment effects and it does not offer alternative treatment options or direct insight in treatment mechanisms. In this review, an overview is given of the current status and the potential of PET imaging of inflammation and angiogenesis in atherosclerosis in general and special emphasis is given to imaging of α7 nicotinic acetylcholine receptors (α7 nAChRs). Due to the gaps that still exist in our understanding of atherogenesis and the limitations of the available PET tracers, the search continues for a more specific radioligand, able to differentiate between stable atherosclerosis and plaques prone to rupture. The potential role of the α7 nAChR as imaging marker for plaque vulnerability is explored. Today, strong evidence exists that nAChRs are involved in the atherosclerotic disease process. They are suggested to mediate the deleterious effects of the major tobacco component, nicotine, a nAChR agonist. Mainly based on in vitro data, α7 nAChR stimulation might increase plaque burden via increased neovascularization. However, in animal studies, α7 nAChR manipulation appears to reduce plaque size due to its inhibitory effects on inflammatory cells. Thus, reliable identification of α7 nAChRs by in vivo imaging is crucial to investigate the exact role of α7 nAChR in atherosclerosis before any therapeutic approach in the human setting can be justified. In this review, we discuss the first experience with α7 nAChR PET tracers and developmental considerations regarding the "optimal" PET tracer to image vascular nAChRs.


Asunto(s)
Aterosclerosis/diagnóstico por imagen , Aterosclerosis/metabolismo , Fluorodesoxiglucosa F18/metabolismo , Tomografía de Emisión de Positrones/métodos , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Animales , Fluorodesoxiglucosa F18/administración & dosificación , Humanos , Tomografía de Emisión de Positrones/tendencias
4.
Eur J Nucl Med Mol Imaging ; 43(13): 2433-2447, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27517840

RESUMEN

PURPOSE: The extent of neovascularization determines the clinical outcome of coronary artery disease and other occlusive cardiovascular disorders. Monitoring of neovascularization is therefore highly important. This review article will elaborately discuss preclinical studies aimed at validating new nuclear angiogenesis and arteriogenesis tracers. Additionally, we will briefly address possible obstacles that should be considered when designing an arteriogenesis radiotracer. METHODS: A structured medline search was the base of this review, which gives an overview on different radiopharmaceuticals that have been evaluated in preclinical models. RESULTS: Neovascularization is a collective term used to indicate different processes such as angiogenesis and arteriogenesis. However, while it is assumed that sensitive detection through nuclear imaging will facilitate translation of successful therapeutic interventions in preclinical models to the bedside, we still lack specific tracers for neovascularization imaging. Most nuclear imaging research to date has focused on angiogenesis, leaving nuclear arteriogenesis imaging largely overlooked. CONCLUSION: Although angiogenesis is the process which is best understood, there is no scarcity in theoretical targets for arteriogenesis imaging.


Asunto(s)
Isquemia Miocárdica/diagnóstico por imagen , Neovascularización Patológica/diagnóstico por imagen , Imagen de Perfusión/métodos , Enfermedad Arterial Periférica/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Tomografía Computarizada de Emisión de Fotón Único/métodos , Animales , Técnicas de Imagen Cardíaca/métodos , Modelos Animales de Enfermedad , Aumento de la Imagen/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
5.
Bioconjug Chem ; 26(12): 2397-407, 2015 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-26473388

RESUMEN

We present the combination of the clinically well-proven chemotherapeutic agent, Doxorubicin, and (99m)Tc, an Auger and internal conversion electron emitter, into a dual-action agent for therapy. Chemical conjugation of Doxorubicin to (99m)Tc afforded a construct which autonomously ferries a radioactive payload into the cell nucleus. At this site, damage is exerted by dose deposition from Auger radiation. The (99m)Tc-conjugate exhibited a dose-dependent inhibition of survival in a selected panel of cancer cells and an in vivo study in healthy mice evidenced a biodistribution which is comparable to that of the parent drug. The homologous Rhenium conjugate was found to effectively bind to DNA, inhibited human Topoisomerase II, and exhibited cytotoxicity in vitro. The collective in vitro and in vivo data demonstrate that the presented metallo-conjugates closely mimic native Doxorubicin.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Doxorrubicina/química , Doxorrubicina/farmacología , Tecnecio/química , Tecnecio/farmacología , Animales , Antineoplásicos/farmacocinética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , ADN-Topoisomerasas de Tipo II/metabolismo , Doxorrubicina/farmacocinética , Humanos , Ratones , Neoplasias/tratamiento farmacológico , Tecnecio/farmacocinética , Inhibidores de Topoisomerasa II/química , Inhibidores de Topoisomerasa II/farmacocinética , Inhibidores de Topoisomerasa II/farmacología
6.
Chemistry ; 21(16): 6090-9, 2015 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-25765900

RESUMEN

Radiolabeling allows noninvasive imaging by single photon emission computed tomography (SPECT) or positron emission tomography (PET) for assessing the biodistribution of nanostructures. Herein, the synthesis of a new coating ligand for gold nanoparticles (AuNPs) and quantum dots (QDs) is reported. This ligand is multifunctional; it combines the metal chelate with conjugating functions to biological vectors. The concept allows the coupling of any targeting function to the chelator; an example for the prostate specific membrane antigen is given. Derivatized NPs can directly be labeled in one step with [(99m) Tc(OH2 )3 (CO)3 ](+) . AuNPs in particular are highly stable, a prerequisite for in vivo studies excluding misinterpretation of the biodistribution data. AuNPs with differing sizes (7 and 14 nm core diameter) were administered intravenously into nude NMRI mice bearing LNCaP xenografts. MicroSPECT images show for both probes rapid clearance from the blood pool through the hepatobiliary pathway. The 7 nm AuNPs revealed a significantly higher bone uptake than the 14 nm AuNPs. The high affinity towards bone mineral is further confirmed in vitro with hydroxyapatite.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Compuestos de Organotecnecio/farmacocinética , Puntos Cuánticos/química , Animales , Células COS , Línea Celular , Chlorocebus aethiops , Oro/metabolismo , Oro/farmacocinética , Ligandos , Nanopartículas del Metal/ultraestructura , Ratones Desnudos , Modelos Moleculares , Neoplasias/diagnóstico , Compuestos de Organotecnecio/química , Compuestos de Organotecnecio/metabolismo , Puntos Cuánticos/metabolismo , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único
7.
Curr Cardiol Rep ; 17(8): 67, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26183620

RESUMEN

During the past years, non-neuronal vascular nicotinic acetylcholine receptors (nAChRs) increasingly have gained interest in cardiovascular research, as they are known to mediate the deleterious effects of nicotine and nitrosamines, components of tobacco smoke, on the vasculature. Because smoking is a major risk factor for the development of atherosclerosis, it is obvious that understanding the pathophysiologic role of nAChRs in the atherosclerotic disease process, as well as in the development of new diagnostic and therapeutic nAChR-related options, has become more important. Accordingly, we briefly summarize the pathophysiologic role of vascular nAChRs in the atherosclerotic disease process. We also provide an overview of currently available nAChR positron emission tomography (PET) tracers and their performance in the noninvasive imaging of vascular nAChRs, as well as potential nAChR PET tracers that might be an option for vascular nAChR PET imaging in the future.


Asunto(s)
Aterosclerosis/metabolismo , Nicotina/metabolismo , Tomografía de Emisión de Positrones , Receptores Nicotínicos/metabolismo , Fumar/efectos adversos , Aterosclerosis/etiología , Aterosclerosis/patología , Humanos , Nicotina/efectos adversos , Transducción de Señal , Fumar/metabolismo
8.
Eur J Nucl Med Mol Imaging ; 41(4): 776-91, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24509875

RESUMEN

PURPOSE: Brown adipose tissue (BAT) has transformed from an interfering tissue in oncological (18)F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to an independent imaging research field. This review takes the perspective from the imaging methodology on which human BAT research has come to rely on heavily. METHODS: This review analyses relevant PubMed-indexed publications that discuss molecular imaging methods of BAT. In addition, reported links between BAT and human diseases such as obesity are discussed, and the possibilities for imaging in these fields are highlighted. Radiopharmaceuticals aiming at several different biological mechanisms of BAT are discussed and evaluated. RESULTS: Prospective, dedicated studies allow visualization of BAT function in a high percentage of human subjects. BAT dysfunction has been implicated in obesity, linked with diabetes and associated with cachexia and atherosclerosis. Presently, (18)F-FDG PET/CT is the most useful tool for evaluating therapies aiming at BAT activity. In addition to (18)F-FDG, other radiopharmaceuticals such as (99m)Tc-sestamibi, (123)I-metaiodobenzylguanidine (MIBG), (18)F-fluorodopa and (18)F-14(R,S)-[(18)F]fluoro-6-thia-heptadecanoic acid (FTHA) may have a potential for visualizing other aspects of BAT activity. MRI methods are under continuous development and provide the prospect of functional imaging without ionizing radiation. CONCLUSION: Molecular imaging of BAT can be used to quantitatively assess different aspects of BAT metabolic activity.


Asunto(s)
Tejido Adiposo Pardo/diagnóstico por imagen , Aterosclerosis/diagnóstico por imagen , Diabetes Mellitus/diagnóstico por imagen , Neoplasias/diagnóstico por imagen , Obesidad/diagnóstico por imagen , Tomografía de Emisión de Positrones , Tejido Adiposo Pardo/fisiología , Tejido Adiposo Pardo/fisiopatología , Regulación de la Temperatura Corporal , Humanos , Radiofármacos
9.
Pharm Res ; 31(2): 278-90, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23934256

RESUMEN

PURPOSE: To study whether formulation influences biodistribution, necrosis avidity and tumoricidal effects of the radioiodinated hypericin, a necrosis avid agent for a dual-targeting anticancer radiotherapy. METHODS: Iodine-123- and 131-labeled hypericin ((123)I-Hyp and (131)I-Hyp) were prepared with Iodogen as oxidant, and formulated in dimethyl sulfoxide (DMSO)/PEG400 (polyethylene glycol 400)/water (25/60/15, v/v/v) or DMSO/saline (20:80, v/v). The formulations with excessive Hyp were optically characterized. Biodistribution, necrosis avidity and tumoricidal effects were studied in rats (n = 42) without and with reperfused liver infarction and implanted rhabdomyosarcomas (R1). To induce tumor necrosis, R1-rats were pre-treated with a vascular disrupting agent. Magnetic resonance imaging, tissue-gamma counting, autoradiography and histology were used. RESULTS: The two formulations differed significantly in fluorescence and precipitation. (123)I-Hyp/Hyp in DMSO/PEG400/water exhibited high uptake in necrosis but lower concentration in the lung, spleen and liver (p < 0.01). Tumor volumes of 0.9 ± 0.3 cm(3) with high radioactivity (3.1 ± 0.3% ID/g) were detected 6 days post-treatment. By contrast, (131)I-Hyp/Hypin DMSO/saline showed low uptake in necrosis but high retention in the spleen and liver (p < 0.01). Tumor volumes reached 2.6 ± 0.7 cm(3) with low tracer accumulation (0.1 ± 0.04%ID/g). CONCLUSIONS: The formulation of radioiodinated hypericin/hypericin appears crucial for its physical property, biodistribution, necrosis avidity and tumoricidal effects.


Asunto(s)
Radioisótopos de Yodo/metabolismo , Radioisótopos de Yodo/farmacología , Perileno/análogos & derivados , Radiofármacos/metabolismo , Radiofármacos/farmacología , Animales , Antracenos , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Química Farmacéutica/métodos , Dimetilsulfóxido/química , Radioisótopos de Yodo/química , Hígado/metabolismo , Masculino , Necrosis , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Perileno/química , Perileno/metabolismo , Perileno/farmacología , Polietilenglicoles/química , Radiofármacos/química , Ratas , Bazo/metabolismo , Distribución Tisular , Agua/química
10.
Med Phys ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38588509

RESUMEN

BACKGROUND: Since 2011, the International Commission on Radiological Protection (ICRP) has recommended an annual eye lens dose limit of 20 mSv for radiation workers, averaged over 5 years, with no year exceeding 50 mSv. However, limited research has been conducted on dose rate conversion coefficients (DCCs) for direct contamination of the eye. PURPOSE: This study aimed to accurately determine DCCs for the eye lens and cornea for ocular contamination with radionuclides used in nuclear medicine. METHODS: DCCs for 37 radionuclides used in nuclear medicine were determined using two different methods. Method 1 involved conducting Monte Carlo (MC) simulations of an ICRU cylinder to determine the absorbed dose at a depth of 3 mm resulting from a point source. The accuracy of this simulation approach was validated by experimental thermoluminescent dosimeter (TLD) measurements for 18F, 68Ga, 99mTc, and 177Lu. In method 2, average DCCs were calculated for the eye lens (complete and radiosensitive parts) and the cornea for both a point source and thin surface contamination centered on the cornea using MC simulations on the adult mesh-type reference computational phantom of the eye from the ICRP (MRCP). RESULTS: DCCs determined from TLD measurements showed excellent agreement (deviations: +1.4%, +4.7%, -3.1%, and -2.5% for 18F, 68Ga, 99mTc, and 177Lu, respectively) compared to MC simulations of the experimental set-up. For the 37 radionuclides, DCCs of the complete eye-lens for a point source ranged from 2.53 × 10-7 to 4.15 × 10-2 mGy MBq-1 s-1 for the adult MRCPs, being substantially smaller compared to DCCs determined via MC simulations of a ICRU cylinder. In general, point source and surface contamination showed comparable DCCs for the eye lens. Radionuclides emitting low-energy beta radiation or conversion electrons (e.g., 177Lu, 99mTc) showed low DCCs as the radiation does not penetrate to the depth of the eye lens, while radionuclides emitting high-energy beta radiation (e.g., 90Y) showed high DCCs. Overall, DCCs for the radiosensitive part of the eye lens were larger (up to a factor of 3) compared to the complete eye lens. DCCs for the cornea were larger than for the eye lens with a factor that strongly depended on the emitted radiation type. Especially alpha emitters (e.g., 211At, 223Ra) showed high DCCs for the cornea because of the short range of alpha radiation, leading to local maxima in the cornea and not reaching the eye lens. CONCLUSION: DCCs at a depth of 3 mm in an ICRU cylinder and adult MRCP DCCs for both the complete and sensitive parts of the eye lens and cornea were determined for 37 radionuclides having applications in nuclear medicine. These DCCs are highly useful in radiation safety assessments and radiation dose calculations in ocular contamination incidents.

11.
EJNMMI Res ; 13(1): 42, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37171631

RESUMEN

By clearing GABA from the synaptic cleft, GABA transporters (GATs) play an essential role in inhibitory neurotransmission. Consequently, in vivo visualization of GATs can be a valuable diagnostic tool and biomarker for various psychiatric and neurological disorders. Not surprisingly, in recent years several research attempts to develop a radioligand have been conducted, but so far none have led to suitable radioligands that allow imaging of GATs. Here, we provide an overview of the radioligands that were developed with a focus on GAT1, since this is the most abundant transporter and most of the research concerns this GAT subtype. Initially, we focus on the field of GAT1 inhibitors, after which we discuss the development of GAT1 radioligands based on these inhibitors. We hypothesize that the radioligands developed so far have been unsuccessful due to the zwitterionic nature of their nipecotic acid moiety. To overcome this problem, the use of non-classical GAT inhibitors as basis for GAT1 radioligands or the use of carboxylic acid bioisosteres may be considered. As the latter structural modification has already been used in the field of GAT1 inhibitors, this option seems particularly viable and could lead to the development of more successful GAT1 radioligands in the future.

13.
Invest New Drugs ; 30(6): 2132-40, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22187204

RESUMEN

As an alternative to directly targeting of necrotic tissue using hypericin, we synthesized a conjugate of hypericin to biotin for use in a pretargeting approach. With this conjugate, we explored the possibility of a two-step pretargeting strategy using (123)I-labeled avidin as effector molecule directed against necrotic RIF-1 tumors. Hypericin was conjugated to biotin-ethylenediamine in a straightforward coupling method using n-hydroxysuccinimide and dicyclohexylcarbodiimide. The necrosis avidity of the conjugate was first confirmed in necrotic liver tissue by means of fluorescence microscopy. Using autoradiography imaging and whole body-biodistribution, the accumulation of (123)I-avidin in necrotic tumor tissue was evaluated 24 h after administration and 48 h after pretargeting with hypericin-biotin. Analysis of autoradiography images show a higher accumulation of (123)I-avidin in pretargeted compared to nontargeted tissue. However, absolute accumulation of (123)I-avidin in necrotic tumors was low as shown by biodistribution experiments. Direct injection of hypericin-biotin or biotin-fluorescein did not substantially improve (123)I-avidin accumulation after pretargeting, pointing towards a poor penetration of avidin in necrotic tissue. Our results show the feasibility of a pretargeting technique using a small molecule as targeting agent. However, for a more efficient accumulation of the effector molecule in necrotic tissue, other pretargeting strategies need to be investigated.


Asunto(s)
Antineoplásicos/administración & dosificación , Avidina/administración & dosificación , Biotina/administración & dosificación , Necrosis/metabolismo , Neoplasias/metabolismo , Perileno/análogos & derivados , Animales , Antracenos , Antineoplásicos/química , Avidina/farmacocinética , Biotina/química , Biotinilación , Línea Celular Tumoral , Medios de Contraste/administración & dosificación , Medios de Contraste/farmacocinética , Etanol , Femenino , Radioisótopos de Yodo , Ratones , Ratones Endogámicos C3H , Necrosis/inducido químicamente , Necrosis/patología , Neoplasias/patología , Perileno/administración & dosificación , Perileno/química , Distribución Tisular
14.
Cancers (Basel) ; 14(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35008392

RESUMEN

PARP1 inhibitors (PARPi) are currently approved for BRCAmut metastatic breast cancer, but they have shown limited response in triple negative breast cancer (TNBC) patients. Combination of an Auger emitter with PARPis enables PARP inhibition and DNA strand break induction simultaneously. This will enhance cytotoxicity and additionally allow a theranostic approach. This study presents the radiosynthesis of the Auger emitter [125I] coupled olaparib derivative: [125I]-PARPi-01, and its therapeutic evaluation in a panel of TNBC cell lines. Specificity was tested by a blocking assay. DNA strand break induction was analysed by γH2AX immunofluorescence staining. Cell cycle analysis and apoptosis assays were studied using flow cytometry in TNBC cell lines (BRCAwt/mut). Anchorage independent growth potential was evaluated using soft agar assay. [125I]-PARPi-01 showed PARP1-specificity and higher cytotoxicity than olaparib in TNBC cell lines irrespective of BRCA their status. Cell lines harbouring DNA repair deficiency showed response to [125I]-PARPi-01 monotherapy. Combined treatment with Dox-NP further enhanced therapeutic efficiency in metastatic resistant BRCAwt cell lines. The clonogenic survival was significantly reduced after treatment with [125I]-PARPi-01 in all TNBC lines investigated. Therapeutic efficacy was further enhanced after combined treatment with chemotherapeutics. [125I]-PARPi-01 is a promising radiotherapeutic agent for low radiation dosages, and mono/combined therapies of TNBC.

15.
EJNMMI Res ; 12(1): 60, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36104637

RESUMEN

BACKGROUND: Triple-negative breast cancer (TNBC) lacks biomarkers for targeted therapy. Auger emitters display the best therapeutic effect, if delivered directly into the nucleus proximal to DNA. The nuclear protein Poly (ADP-ribose)-Polymerase 1 (PARP1) is a suitable target against which few inhibitors (PARPi) are clinically approved for treatment of breast cancer with germline BRCA mutation (BRCAmut). In this study, a theranostic approach was investigated in a TNBC xenografted mouse model by radiolabelling a close derivative of a PARPi Olaparib (termed PARPi-01) with the Auger emitters 123/125I. METHODS: TNBC cell line MDA-MB-231 was subcutaneously implanted in female NOD/SCID mice. At a tumour size of ~ 500mm3, [123I]PARPi-01 was administered intravenously, and SPECT/CT images were obtained at 4 h or 24 h post injection (p.i). A therapy study was performed with [125I]PARPi-01 in 4 doses (10 MBq/dose, 10 days apart). Tumour growth was monitored by CT scans longitudinally once per week. Upon reaching study endpoint, tissues were harvested and stained with TUNEL assay for detection of apoptosis induction. RESULTS: SPECT/CT images showed rapid hepatobiliary tracer clearance at 4 h post injection (p.i.). Retention in thyroid at 24 h p.i. suggested tracer deiodination in vivo. The tumour and liver uptake were 0.2%ID/g and 2.5%ID/g, respectively. The tumour: blood ratio was 1.3. Endogenous therapy induced a significant delay in tumour growth (doubling time increased from 8.3 to 14.2 days), but no significant survival advantage. Significantly higher apoptosis ratio was observed in [125I]PARPi-01 treated tumour tissues. No radiotoxicity was detected in the liver and thyroid. CONCLUSION: Considering the radio-cytotoxic effect in the tumour tissue and a delay on tumour doubling time, [125I]PARPi-01 presents a potential radiotherapeutics for treatment of TNBC. Improvements to overcome the suboptimal pharmacokinetics are necessary for its potential clinical application.

16.
J Thromb Haemost ; 19(5): 1348-1363, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33687782

RESUMEN

INTRODUCTION: Vitamin K antagonists (VKA) and non-vitamin K oral antagonist anticoagulants (NOAC) are used in the clinic to reduce risk of thrombosis. However, they also exhibit vascular off-target effects. The aim of this study is to compare VKA and NOAC on atherosclerosis progression and calcification in an experimental setup. MATERIAL AND METHODS: Female Apoe-/- mice (age 12 weeks) were fed Western-type diet as control or supplemented with dabigatran etexilate or warfarin for 6 or 18 weeks. Vascular calcification was measured in whole aortic arches using µCT and [18 F]-NaF. Atherosclerotic burden was assessed by (immuno)histochemistry. Additionally, in vitro effects of warfarin, thrombin, and dabigatran on primary vascular smooth muscle cells (VSMC) were assessed. RESULTS: Short-term treatment with warfarin promoted formation of atherosclerotic lesions with a pro-inflammatory phenotype, and more rapid plaque progression compared with control and dabigatran. In contrast, dabigatran significantly reduced plaque progression compared with control. Long-term warfarin treatment significantly increased both presence and activity of plaque calcification compared with control and dabigatran. Calcification induced by warfarin treatment was accompanied by increased presence of uncarboxylated matrix Gla protein. In vitro, both warfarin and thrombin significantly increased VSMC oxidative stress and extracellular vesicle release, which was prevented by dabigatran. CONCLUSION: Warfarin aggravates atherosclerotic disease activity, increasing plaque inflammation, active calcification, and plaque progression. Dabigatran lacks undesired vascular side effects and reveals beneficial effects on atherosclerosis progression and calcification. The choice of anticoagulation impacts atherosclerotic disease by differential off target effect. Future clinical studies should test whether this beneficial effect also applies to patients.


Asunto(s)
Aterosclerosis , Fibrilación Atrial , Animales , Anticoagulantes , Aterosclerosis/tratamiento farmacológico , Dabigatrán , Femenino , Humanos , Ratones , Vitamina K , Warfarina
17.
EJNMMI Res ; 10(1): 127, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33085016

RESUMEN

BACKGROUND: In vivo imaging of glucose analogue 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) via positron emission tomography (PET) is the current gold standard to visualize and assess brown adipose tissue (BAT) activity. However, glucose metabolism is only a part of the metabolic activity of BAT. [18F]FDG-PET has been shown in clinical trials to often fail to visualize BAT under insulin-resistant conditions associated with aging and weight gain. We employed a novel developed triglyceride-based tracer to visualize BATs metabolic activity under different temperature conditions as well as under diabetic and obese conditions in preclinical models. RESULTS: [18F]BDP-TG-chylomicron-like particles visualized BAT in control, streptozocin-induced diabetes and obese mice. Increased BAT tracer uptake was found in control mice acutely exposed to cold but not in cold-acclimated animals. Diabetes did not remove BAT tracer uptake, but did limit BAT tracer uptake to levels of control mice housed at 21 °C. In obese animals, BAT tracer uptake was significantly reduced, although the stimulating effect of cold exposure could still be noted. CONCLUSION: BAT was visualized in control, diabetic and obese conditions. Streptozocin-induced diabetes, but not obesity, inhibited the stimulatory effect of cold exposure.

18.
Surg Neurol Int ; 11: 344, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33194278

RESUMEN

BACKGROUND: Lumbar disc herniation is often associated with an inflammatory process. In this context, inflammation has been considered a key factor in the modulation of pain. Here, we present a case of inflammatory activity directly documented in a patient with a lumbar disc herniation. CASE DESCRIPTION: A 49-year-old male presented with progressive low back pain and left-sided S1 radiculopathy, without a focal neurological deficit. The lumbar MR revealed a prominent herniated disc at the L5-S1 level, with compression of the left S1 root. The patient underwent a L5-S1 discectomy using a standard interlaminar approach. Although initially he was pain free, he required three additional operations to address recurrent pain complaints. As research indicates that local inflammation contributes to neuropathic pain, we had the patient undergoes single-photon emission computed tomography (SPECT) imaging using technetium-99m-labeled-infliximab (an anti-tumor necrosis factor [TNF]-alpha monoclonal antibody) before a proposed fourth operation. The SPECT study documented a strong signal at the site of the herniated disc, thus confirming the diagnosis of a pro-inflammatory process involving the S1 nerve root. Nine months after the fourth operation, the patient was pain free. Of interest, the second SPECT study in the now asymptomatic patient demonstrated no detectable/ residual signal at the operative/disc site. CONCLUSION: Absence of a SPECT TNF-alpha signal in a pain-free patient following a lumbar discectomy correlates with the reduction/resolution of the local preoperative inflammatory response.

19.
EJNMMI Phys ; 7(1): 69, 2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33226485

RESUMEN

BACKGROUND: Personalized molecular radiotherapy based on theragnostics requires accurate quantification of the amount of radiopharmaceutical activity administered to patients both in diagnostic and therapeutic applications. This international multi-center study aims to investigate the clinical measurement accuracy of radionuclide calibrators for 7 radionuclides used in theragnostics: 99mTc, 111In, 123I, 124I, 131I, 177Lu, and 90Y. METHODS: In total, 32 radionuclide calibrators from 8 hospitals located in the Netherlands, Belgium, and Germany were tested. For each radionuclide, a set of four samples comprising two clinical containers (10-mL glass vial and 3-mL syringe) with two filling volumes were measured. The reference value of each sample was determined by two certified radioactivity calibration centers (SCK CEN and JRC) using two secondary standard ionization chambers. The deviation in measured activity with respect to the reference value was determined for each radionuclide and each measurement geometry. In addition, the combined systematic deviation of activity measurements in a theragnostic setting was evaluated for 5 clinically relevant theragnostic pairs: 131I/123I, 131I/124I, 177Lu/111In, 90Y/99mTc, and 90Y/111In. RESULTS: For 99mTc, 131I, and 177Lu, a small minority of measurements were not within ± 5% range from the reference activity (percentage of measurements not within range: 99mTc, 6%; 131I, 14%; 177Lu, 24%) and almost none were outside ± 10% range. However, for 111In, 123I, 124I, and 90Y, more than half of all measurements were not accurate within ± 5% range (111In, 51%; 123I, 83%; 124I, 63%; 90Y, 61%) and not all were within ± 10% margin (111In, 22%; 123I, 35%; 124I, 15%; 90Y, 25%). A large variability in measurement accuracy was observed between radionuclide calibrator systems, type of sample container (vial vs syringe), and source-geometry calibration/correction settings used. Consequently, we observed large combined deviations (percentage deviation > ± 10%) for the investigated theragnostic pairs, in particular for 90Y/111In, 131I/123I, and 90Y/99mTc. CONCLUSIONS: Our study shows that substantial over- or underestimation of therapeutic patient doses is likely to occur in a theragnostic setting due to errors in the assessment of radioactivity with radionuclide calibrators. These findings underline the importance of thorough validation of radionuclide calibrator systems for each clinically relevant radionuclide and sample geometry.

20.
Sci Rep ; 10(1): 19354, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-33168861

RESUMEN

The metabolism of ceramides is deregulated in the brain of Alzheimer's disease (AD) patients and is associated with apolipoprotein (APO) APOE4 and amyloid-ß pathology. However, how the ceramide metabolism changes over time in AD, in vivo, remains unknown. Distribution and metabolism of [18F]F-HPA-12, a radio-fluorinated version of the ceramide analog N-(3-hydroxy-1-hydroxymethyl-3-phenylpropyl) dodecanamide, was investigated in the brain of AD transgenic mouse models (FAD) on an APOE4 or APOE3 genetic background, by positron emission tomography and by gamma counter. We found that FAD mice displayed a higher uptake of [18F]F-HPA-12 in the brain, independently from the APOE4 or APOE3 genetic background. FAD mice could be distinguished from littermate control animals with a sensitivity of 85.7% and a specificity of 87.5%, by gamma counter measurements. Metabolic analysis of [18F]F-HPA-12 in the brain suggested that the tracer is degraded less efficiently in the FAD mice. Furthermore, the radioactive signal registered in the hippocampus correlated with an increase of Cer d18:1/20:2 levels measured in the same brain region by mass spectrometry. Our data gives additional proof that ceramide metabolism is different in FAD mice compared to controls. Ceramide analogs like HPA-12 may function as metabolic probes to study ceramide disbalance in the brain.


Asunto(s)
Enfermedad de Alzheimer/genética , Amidas , Encéfalo/metabolismo , Ceramidas/química , Radioisótopos de Flúor , Esfingolípidos/química , Enfermedad de Alzheimer/diagnóstico por imagen , Animales , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Astrocitos/metabolismo , Encéfalo/diagnóstico por imagen , Modelos Animales de Enfermedad , Femenino , Hipocampo/metabolismo , Lipidómica , Espectrometría de Masas , Ratones , Ratones Noqueados para ApoE , Curva ROC , Sensibilidad y Especificidad , Esfingomielinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA