Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Proteome Res ; 22(7): 2525-2537, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37294184

RESUMEN

By far the largest contribution to ion detectability in liquid chromatography-driven mass spectrometry-based proteomics is the efficient generation of peptide molecular ions by the electrospray source. To maximize the transfer of peptides from the liquid to gaseous phase and allow molecular ions to enter the mass spectrometer at microspray flow rates, an efficient electrospray process is required. Here we describe the superior performance of newly design vacuum insulated probe heated electrospray ionization (VIP-HESI) source coupled to a Bruker timsTOF PRO mass spectrometer operated in microspray mode. VIP-HESI significantly improves chromatography signals in comparison to electrospray ionization (ESI) and nanospray ionization using the captivespray (CS) source and provides increased protein detection with higher quantitative precision, enhancing reproducibility of sample injection amounts. Protein quantitation of human K562 lymphoblast samples displayed excellent chromatographic retention time reproducibility (<10% coefficient of variation (CV)) with no signal degradation over extended periods of time, and a mouse plasma proteome analysis identified 12% more plasma protein groups allowing large-scale analysis to proceed with confidence (1,267 proteins at 0.4% CV). We show that the Slice-PASEF VIP-HESI mode is sensitive in identifying low amounts of peptide without losing quantitative precision. We demonstrate that VIP-HESI coupled with microflow rate chromatography achieves a higher depth of coverage and run-to-run reproducibility for a broad range of proteomic applications. Data and spectral libraries are available via ProteomeXchange (PXD040497).


Asunto(s)
Proteómica , Espectrometría de Masa por Ionización de Electrospray , Humanos , Animales , Ratones , Espectrometría de Masa por Ionización de Electrospray/métodos , Reproducibilidad de los Resultados , Proteómica/métodos , Vacio , Cromatografía Liquida/métodos , Péptidos/análisis , Iones , Proteoma/análisis
2.
Geroscience ; 46(2): 1543-1560, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37653270

RESUMEN

Using mouse models and high-throughput proteomics, we conducted an in-depth analysis of the proteome changes induced in response to seven interventions known to increase mouse lifespan. This included two genetic mutations, a growth hormone receptor knockout (GHRKO mice) and a mutation in the Pit-1 locus (Snell dwarf mice), four drug treatments (rapamycin, acarbose, canagliflozin, and 17α-estradiol), and caloric restriction. Each of the interventions studied induced variable changes in the concentrations of proteins across liver, kidney, and gastrocnemius muscle tissue samples, with the strongest responses in the liver and limited concordance in protein responses across tissues. To the extent that these interventions promote longevity through common biological mechanisms, we anticipated that proteins associated with longevity could be identified by characterizing shared responses across all or multiple interventions. Many of the proteome alterations induced by each intervention were distinct, potentially implicating a variety of biological pathways as being related to lifespan extension. While we found no protein that was affected similarly by every intervention, we identified a set of proteins that responded to multiple interventions. These proteins were functionally diverse but tended to be involved in peroxisomal oxidation and metabolism of fatty acids. These results provide candidate proteins and biological mechanisms related to enhancing longevity that can inform research on therapeutic approaches to promote healthy aging.


Asunto(s)
Longevidad , Proteoma , Ratones , Animales , Longevidad/genética , Proteoma/metabolismo , Proteómica , Factores de Transcripción/genética , Receptores de Somatotropina
3.
bioRxiv ; 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36824828

RESUMEN

By far the largest contribution to ion detectability in liquid chromatography-driven mass spectrometry-based proteomics is the efficient generation of peptide ions by the electrospray source. To maximize the transfer of peptides from liquid to a gaseous phase to allow molecular ions to enter the mass spectrometer at micro-spray flow rates, an efficient electrospray process is required. Here we describe superior performance of new Vacuum-Insulated-Probe-Heated-ElectroSpray-Ionization source (VIP-HESI) coupled with micro-spray flow rate chromatography and Bruker timsTOF PRO mass spectrometer. VIP-HESI significantly improves chromatography signals in comparison to nano-spray ionization using the CaptiveSpray source and provides increased protein detection with higher quantitative precision, enhancing reproducibility of sample injection amounts. Protein quantitation of human K562 lymphoblast samples displayed excellent chromatographic retention time reproducibility (<10% coefficient-of-variation (CV)) with no signal degradation over extended periods of time, and a mouse plasma proteome analysis identified 12% more plasma protein groups allowing large-scale analysis to proceed with confidence (1,267 proteins at 0.4% CV). We show that Slice-PASEF mode with VIP-HESI setup is sensitive in identifying low amounts of peptide without losing quantitative precision. We demonstrate that VIP-HESI coupled with micro-flow-rate chromatography achieves higher depth of coverage and run-to-run reproducibility for a broad range of proteomic applications.

4.
Commun Biol ; 6(1): 768, 2023 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-37481675

RESUMEN

Aging manifests as progressive deteriorations in homeostasis, requiring systems-level perspectives to investigate the gradual molecular dysregulation of underlying biological processes. Here, we report systemic changes in the molecular regulation of biological processes under multiple lifespan-extending interventions. Differential Rank Conservation (DIRAC) analyses of mouse liver proteomics and transcriptomics data show that mechanistically distinct lifespan-extending interventions (acarbose, 17α-estradiol, rapamycin, and calorie restriction) generally tighten the regulation of biological modules. These tightening patterns are similar across the interventions, particularly in processes such as fatty acid oxidation, immune response, and stress response. Differences in DIRAC patterns between proteins and transcripts highlight specific modules which may be tightened via augmented cap-independent translation. Moreover, the systemic shifts in fatty acid metabolism are supported through integrated analysis of liver transcriptomics data with a mouse genome-scale metabolic model. Our findings highlight the power of systems-level approaches for identifying and characterizing the biological processes involved in aging and longevity.


Asunto(s)
Metabolismo de los Lípidos , Longevidad , Animales , Ratones , Envejecimiento , Modelos Animales de Enfermedad , Hígado , Ácidos Grasos
5.
Clin Chem ; 56(11): 1733-41, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20847327

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) are small, noncoding RNAs that play an important role in regulating various biological processes through their interaction with cellular messenger RNAs. Extracellular miRNAs in serum, plasma, saliva, and urine have recently been shown to be associated with various pathological conditions including cancer. METHODS: With the goal of assessing the distribution of miRNAs and demonstrating the potential use of miRNAs as biomarkers, we examined the presence of miRNAs in 12 human body fluids and urine samples from women in different stages of pregnancy or patients with different urothelial cancers. Using quantitative PCR, we conducted a global survey of the miRNA distribution in these fluids. RESULTS: miRNAs were present in all fluids tested and showed distinct compositions in different fluid types. Several of the highly abundant miRNAs in these fluids were common among multiple fluid types, and some of the miRNAs were enriched in specific fluids. We also observed distinct miRNA patterns in the urine samples obtained from individuals with different physiopathological conditions. CONCLUSIONS: MicroRNAs are ubiquitous in all the body fluid types tested. Fluid type-specific miRNAs may have functional roles associated with the surrounding tissues. In addition, the changes in miRNA spectra observed in the urine samples from patients with different urothelial conditions demonstrates the potential for using concentrations of specific miRNAs in body fluids as biomarkers for detecting and monitoring various physiopathological conditions.


Asunto(s)
Líquidos Corporales/química , MicroARNs/análisis , Biomarcadores/análisis , Femenino , Humanos , Neoplasias Renales/orina , Reacción en Cadena de la Polimerasa , Embarazo , Trimestres del Embarazo/orina , Valores de Referencia , Neoplasias de la Vejiga Urinaria/orina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA