RESUMEN
Exposure to aflatoxin B1 can be associated with reproductive toxicity, accompanied by decreased sperm concentration in animal models. The aim of this meta-analysis was to determine the correlation between aflatoxin B1 exposure and sperm concentrations of male rodents (both mice and rats). According to inclusion and exclusion criteria, 8 articles were selected to assess in the current meta-analysis. The random effects and pooled analysis indicated that sperm concentration was decreased in mice [MD sperm = -20.79×106/sperm/g testis (95%CI =-1.3 to -50.5)] and in rats [-24.34×106/sperm/g testis (95%CI: -7.60 to -44.35)] after exposure to aflatoxin B1 compared with control groups. A significant heterogeneity was found among studies (for mice I2=99.7%, %, P<0.000 and rats =I2=98.8, P<0.000). The findings of present meta-analysis showed the association between aflatoxin B1 exposure and a decrease in sperm concentration in rodents.
Asunto(s)
Aflatoxina B1 , Roedores , Masculino , Ratas , Ratones , Animales , Aflatoxina B1/toxicidad , Semen , Espermatozoides , TestículoRESUMEN
BACKGROUND: The present study aimed to investigate the effects of fish oil supplements compared to corn oil on serum lipid profiles by performing a meta-analysis of randomized controlled trials (RCTs). METHODS: Online databases including PubMed, Web of Science, and Scopus were searched until 30 December 2022. Pooled effect sizes were reported as the weighted mean difference (WMD) with 95% confidence intervals (CI). The Cochrane Collaboration's risk-of-bias tool was utilized to evaluate the quality of the studies. Lipid parameters, including triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL), and high-density lipoprotein cholesterol (HDL), were assessed in the meta-analysis. RESULTS: Overall, 16 eligible trials were included in this systematic review and meta-analysis. The results revealed that the fish oil supplements significantly reduced TG (WMD: - 25.50 mg/dl, 95% CI: - 42.44, - 8.57, P = 0.000) levels compared to corn oil. Also, in this study, fish oil supplements had a positive and significant effect on HDL (WMD: 2.54 mg/dl, 95% CI: 0.55, 4.52). There were no significant changes in TC and LDL. CONCLUSIONS: Our findings showed the effects of fish oil supplements on reducing TG and increasing HDL-c compared to corn oil. Further larger and well-designed RCTs are required to confirm these data.
Asunto(s)
Aceite de Maíz , Suplementos Dietéticos , Aceites de Pescado , Lípidos , Humanos , Colesterol/sangre , HDL-Colesterol/sangre , LDL-Colesterol/sangre , Aceite de Maíz/farmacología , Aceites de Pescado/farmacología , Lípidos/sangre , Ensayos Clínicos Controlados Aleatorios como Asunto , Triglicéridos/sangreRESUMEN
Kiwi extract (KE) including different components such as quercetin, vitamins C and E, and actinides has been known as a debridement agent for burn wounds. In this study, electrospun poly(É-caprolactone)/cellulose acetate blend nanofibers incorporating KE (PCL/CA/KE) were prepared and their performance was evaluated for healing acceleration of burn wounds. The physicochemical characterization of PCL/CA/KE nanofibers showed an average diameter of â¼420 nm, porosity of 70%, water contact angle of 61°, and water uptake of â¼220%. Moreover, the continuous release trend of KE from PCL/CA blend nanofibers happened during 24 h and the release mechanism was governed by the Fickian diffusion. Besides the cytocompatibility of PCL/CA/KE nanofibers, their in vivo experiments revealed that the bioactive wound dressing based on the sample has higher wound closure compared to KE after 21 days. Histopathology of wounds dressed by PCL/CA/KE nanofibers indicated epidermal formation along with a fully extended layer. Eventually, the obtained results confirmed that the PCL/CA/KE nanofibrous sample was a promising wound dressing for burn wound healing.