Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Phys Rev Lett ; 116(13): 136801, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-27081995

RESUMEN

The Kondo effect is the many-body screening of a local spin by a cloud of electrons at very low temperature. It has been proposed as an explanation of the zero-bias anomaly in quantum point contacts where interactions drive a spontaneous charge localization. However, the Kondo origin of this anomaly remains under debate, and additional experimental evidence is necessary. Here we report on the first phase-sensitive measurement of the zero-bias anomaly in quantum point contacts using a scanning gate microscope to create an electronic interferometer. We observe an abrupt shift of the interference fringes by half a period in the bias range of the zero-bias anomaly, a behavior which cannot be reproduced by single-particle models. We instead relate it to the phase shift experienced by electrons scattering off a Kondo system. Our experiment therefore provides new evidence of this many-body effect in quantum point contacts.

2.
Phys Rev Lett ; 108(7): 076802, 2012 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-22401236

RESUMEN

We present evidence for a counterintuitive behavior of semiconductor mesoscopic networks that is the analog of the Braess paradox encountered in classical networks. A numerical simulation of quantum transport in a two-branch mesoscopic network reveals that adding a third branch can paradoxically induce transport inefficiency that manifests itself in a sizable conductance drop of the network. A scanning-probe experiment using a biased tip to modulate the transmission of one branch in the network reveals the occurrence of this paradox by mapping the conductance variation as a function of the tip voltage and position.

3.
Nanotechnology ; 20(26): 264021, 2009 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-19509453

RESUMEN

We study scanning gate microscopy (SGM) in open quantum rings obtained from buried semiconductor InGaAs/InAlAs heterostructures. By performing a theoretical analysis based on the Keldysh-Green function approach we interpret the radial fringes observed in experiments as the effect of randomly distributed charged defects. We associate SGM conductance images with the local density of states (LDOS) of the system. We show that such an association cannot be made with the current density distribution. By varying an external magnetic field we are able to reproduce recursive quasi-classical orbits in LDOS and conductance images, which bear the same periodicity as the Aharonov-Bohm effect.

4.
Phys Rev Lett ; 84(2): 354-7, 2000 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-11015909

RESUMEN

Using a "standard" NMR spin-echo technique we determined the spin polarization P of two-dimensional electrons, confined to GaAs quantum wells, from the hyperfine shift of Ga nuclei located in the wells. Concentrating on the temperature ( 0.05 less, similarT less, similar10 K) and magnetic field ( 7 less, similarB less, similar17 T) dependencies of P at Landau level filling factor nu = 1/2, we find that the results are described well by a simple model of noninteracting composite fermions, although some inconsistencies remain when the two-dimensional electron system is tilted in the magnetic field.

5.
Phys Rev Lett ; 85(20): 4369-72, 2000 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-11060640

RESUMEN

We report very low temperature ( T) thermopower and resistivity ( rho) measurements on variable-density, two-dimensional hole systems confined to GaAs quantum wells. As the hole density is lowered from 1.49x10(11) cm(-2) to 0.14x10(11) cm(-2), the system crosses from an insulating ( drho / dT less, similar0) to a metallic regime ( drho / dT>0) and finally displays insulating behavior ( drho / dT<0). Diffusion thermopower shows a striking sign reversal in a narrow range of density in the metallic regime, suggesting a qualitative change in the conduction or the scattering mechanism.

6.
Nat Commun ; 5: 4290, 2014 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-24978440

RESUMEN

Quantum point contacts exhibit mysterious conductance anomalies in addition to well-known conductance plateaus at multiples of 2e(2)/h. These 0.7 and zero-bias anomalies have been intensively studied, but their microscopic origin in terms of many-body effects is still highly debated. Here we use the charged tip of a scanning gate microscope to tune in situ the electrostatic potential of the point contact. While sweeping the tip distance, we observe repetitive splittings of the zero-bias anomaly, correlated with simultaneous appearances of the 0.7 anomaly. We interpret this behaviour in terms of alternating equilibrium and non-equilibrium Kondo screenings of different spin states localized in the channel. These alternating Kondo effects point towards the presence of a Wigner crystal containing several charges with different parities. Indeed, simulations show that the electron density in the channel is low enough to reach one-dimensional Wigner crystallization over a size controlled by the tip position.

7.
Sci Rep ; 3: 1416, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23475303

RESUMEN

The unique properties of quantum hall devices arise from the ideal one-dimensional edge states that form in a two-dimensional electron system at high magnetic field. Tunnelling between edge states across a quantum point contact (QPC) has already revealed rich physics, like fractionally charged excitations, or chiral Luttinger liquid. Thanks to scanning gate microscopy, we show that a single QPC can turn into an interferometer for specific potential landscapes. Spectroscopy, magnetic field and temperature dependences of electron transport reveal a quantitatively consistent interferometric behavior of the studied QPC. To explain this unexpected behavior, we put forward a new model which relies on the presence of a quantum Hall island at the centre of the constriction as well as on different tunnelling paths surrounding the island, thereby creating a new type of interferometer. This work sets the ground for new device concepts based on coherent tunnelling.

8.
Nat Commun ; 1: 39, 2010 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-20975700

RESUMEN

In the quantum Hall regime, near integer filling factors, electrons should only be transmitted through spatially separated edge states. However, in mesoscopic systems, electronic transmission turns out to be more complex, giving rise to a large spectrum of magnetoresistance oscillations. To explain these observations, recent models put forward the theory that, as edge states come close to each other, electrons can hop between counterpropagating edge channels, or tunnel through Coulomb islands. Here, we use scanning gate microscopy to demonstrate the presence of QH Coulomb islands, and reveal the spatial structure of transport inside a QH interferometer. Locations of electron islands are found by modulating the tunnelling between edge states and confined electron orbits. Tuning the magnetic field, we unveil a continuous evolution of active electron islands. This allows to decrypt the complexity of high-magnetic-field magnetoresistance oscillations, and opens the way to further local-scale manipulations of QH localized states.

13.
Phys Rev B Condens Matter ; 51(2): 1301-1303, 1995 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-9978290
15.
Phys Rev B Condens Matter ; 40(6): 3514-3523, 1989 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-9992320
16.
17.
Phys Rev B Condens Matter ; 52(12): R8621-R8624, 1995 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-9979909
20.
Phys Rev B Condens Matter ; 41(17): 11770-11779, 1990 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-9993623
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA