Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Physiol ; 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37432936

RESUMEN

Hypoxia-ischaemia (HI) before birth is a key risk factor for stillbirth and severe neurodevelopmental disability in survivors, including cerebral palsy, although there are no reliable biomarkers to detect at risk fetuses that may have suffered a transient period of severe HI. We investigated time and frequency domain measures of fetal heart rate variability (FHRV) for 3 weeks after HI in preterm fetal sheep at 0.7 gestation (equivalent to preterm humans) until 0.8 gestation (equivalent to term humans). We have previously shown that this is associated with delayed development of severe white and grey matter injury, including cystic white matter injury (WMI) resembling that observed in human preterm infants. HI was associated with suppression of time and frequency domain measures of FHRV and reduced their circadian rhythmicity during the first 3 days of recovery. By contrast, circadian rhythms of multiple measures of FHRV were exaggerated over the final 2 weeks of recovery, mediated by a greater reduction in FHRV during the morning nadir, but no change in the evening peak. These data suggest that the time of day at which FHRV measurements are taken affects their diagnostic utility. We further propose that circadian changes in FHRV may be a low-cost, easily applied biomarker of antenatal HI and evolving brain injury. KEY POINTS: Hypoxia-ischaemia (HI) before birth is a key risk factor for stillbirth and probably for disability in survivors, although there are no reliable biomarkers for antenatal brain injury. In preterm fetal sheep, acute HI that is known to lead to delayed development of severe white and grey matter injury over 3 weeks, was associated with early suppression of multiple time and frequency domain measures of fetal heart rate variability (FHRV) and loss of their circadian rhythms during the first 3 days after HI. Over the final 2 weeks of recovery after HI, exaggerated circadian rhythms of frequency domain FHRV measures were observed. The morning nadirs were lower with no change in the evening peak of FHRV. Circadian changes in FHRV may be a low-cost, easily applied biomarker of antenatal HI and evolving brain injury.

2.
J Physiol ; 601(10): 2017-2041, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37017488

RESUMEN

Brief repeated fetal hypoxaemia during labour can trigger intrapartum decelerations of the fetal heart rate (FHR) via the peripheral chemoreflex or the direct effects of myocardial hypoxia, but the relative contribution of these two mechanisms and how this balance changes with evolving fetal compromise remain unknown. In the present study, chronically instrumented near-term fetal sheep received surgical vagotomy (n = 8) or sham vagotomy (control, n = 11) to disable the peripheral chemoreflex and unmask myocardial hypoxia. One-minute complete umbilical cord occlusions (UCOs) were performed every 2.5 min for 4 h or until arterial pressure fell below 20 mmHg. Hypotension and severe acidaemia developed progressively after 65.7 ± 7.2 UCOs in control fetuses and 49.5 ± 7.8 UCOs after vagotomy. Vagotomy was associated with faster development of metabolic acidaemia and faster impairment of arterial pressure during UCOs without impairing centralization of blood flow or neurophysiological adaptation to UCOs. During the first half of the UCO series, before severe hypotension developed, vagotomy was associated with a marked increase in FHR during UCOs. After the onset of evolving severe hypotension, FHR fell faster in control fetuses during the first 20 s of UCOs, but FHR during the final 40 s of UCOs became progressively more similar between groups, with no difference in the nadir of decelerations. In conclusion, FHR decelerations were initiated and sustained by the peripheral chemoreflex at a time when fetuses were able to maintain arterial pressure. After the onset of evolving hypotension and acidaemia, the peripheral chemoreflex continued to initiate decelerations, but myocardial hypoxia became progressively more important in sustaining and deepening decelerations. KEY POINTS: Brief repeated hypoxaemia during labour can trigger fetal heart rate decelerations by either the peripheral chemoreflex or myocardial hypoxia, but how this balance changes with fetal compromise is unknown. Reflex control of fetal heart rate was disabled by vagotomy to unmask the effects of myocardial hypoxia in chronically instrumented fetal sheep. Fetuses were then subjected to repeated brief hypoxaemia consistent with the rates of uterine contractions during labour. We show that the peripheral chemoreflex controls brief decelerations in their entirety at a time when fetuses were able to maintain normal or increased arterial pressure. The peripheral chemoreflex still initiated decelerations even after the onset of evolving hypotension and acidaemia, but myocardial hypoxia made an increasing contribution to sustain and deepen decelerations.


Asunto(s)
Acidosis , Hipotensión , Isquemia Miocárdica , Femenino , Ovinos , Embarazo , Animales , Humanos , Desaceleración , Frecuencia Cardíaca Fetal/fisiología , Cordón Umbilical/irrigación sanguínea , Feto , Hipoxia , Hipoxia Fetal
3.
Am J Physiol Regul Integr Comp Physiol ; 320(6): R916-R924, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33881362

RESUMEN

Fetal heart rate variability (FHRV) is a key index of antenatal and intrapartum fetal well-being. FHRV is well established to be mediated by both arms of the autonomic nervous system, but it remains unknown whether higher centers in the forebrain contribute to FHRV. We tested the hypothesis that selective forebrain ischemia would impair the generation of FHRV. Sixteen chronically instrumented near-term fetal sheep were subjected to either forebrain ischemia induced by bilateral carotid occlusion or sham-ischemia for 30 min. Time, frequency, and nonlinear measures of FHRV were assessed during and for seven days after ischemia. Ischemia was associated with profound suppression of electroencephalographic (EEG) power, which remained suppressed throughout the recovery period (P < 0.001). During the first 5 min of ischemia, multiple time and frequency domain measures were increased (all P < 0.05) before returning back to sham levels. A delayed increase in sample entropy was observed during ischemia (P < 0.05). For the first 3 h after ischemia, there was moderate suppression of two measures of FHRV (very-low frequency power and the standard deviation of RR-intervals, both P < 0.05) and increased sample entropy (P < 0.05). Thereafter, all measures of FHRV returned to control levels. In conclusion, profound forebrain ischemia sufficient to lead to severe neural injury had only transient effect on multiple measures of FHRV. These findings suggest that the forebrain makes a limited contribution to FHRV. FHRV therefore primarily originates in the hindbrain and is unlikely to provide meaningful information on forebrain neurodevelopment or metabolism.


Asunto(s)
Feto/fisiopatología , Frecuencia Cardíaca Fetal/efectos de los fármacos , Isquemia/fisiopatología , Ovinos/fisiología , Animales , Sistema Nervioso Autónomo/fisiopatología , Feto/fisiología , Frecuencia Cardíaca/fisiología , Frecuencia Cardíaca Fetal/fisiología , Humanos , Atención Prenatal/métodos
4.
Am J Physiol Regul Integr Comp Physiol ; 319(5): R551-R559, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32877238

RESUMEN

Circulating catecholamines are critical for fetal adaptation to hypoxia by regulating fetal heart rate (FHR) and promoting myocardial contractility and peripheral vasoconstriction. They have been hypothesized to contribute to changes in FHR variability (FHRV) and T-wave morphology, clinical indexes of fetal well-being during labor. ß-Adrenergic blockade with propranolol does not affect FHRV during labor-like hypoxemia and only attenuated the increase in T-wave height between the episodes of hypoxemia. To further investigate the potential role of catecholamines, we investigated whether pharmacological ß-adrenergic stimulation could increase FHRV and T-wave elevation during intermittent labor-like hypoxemia. Nineteen chronically instrumented fetal sheep at 0.85 of gestation received isoprenaline hydrochloride (n = 7) or saline (control, n = 12), followed by three 1-min complete umbilical cord occlusions (UCOs) separated by 4-min reperfusion periods. Before the UCOs, infusion of isoprenaline increased FHR (P < 0.001), absolute-T/QRS ratio (P < 0.001), and one measure of FHRV [root-mean-square of successive RR interval differences (RMSSD), P < 0.05]. UCOs triggered deep FHR decelerations. During UCOs, isoprenaline was associated with increased FHR (P < 0.001) and absolute-T/QRS ratio (P < 0.05), but no effect on T/QRS ratio was observed when normalized to baseline before UCOs (normalized-T/QRS ratio). Between UCOs, isoprenaline increased FHR (P < 0.001) and absolute-T/QRS ratio (P < 0.05) but did not affect normalized-T/QRS ratio or any measures of FHRV. Arterial pressure was not affected by isoprenaline at any point. Our findings indicate that circulating catecholamines regulate FHR but not FHRV during labor-like hypoxemia and promote T-wave elevation between but not during intermittent fetal hypoxemia.


Asunto(s)
Agonistas Adrenérgicos beta/farmacología , Frecuencia Cardíaca Fetal/efectos de los fármacos , Frecuencia Cardíaca Fetal/fisiología , Isoproterenol/farmacología , Cordón Umbilical , Animales , Femenino , Corazón Fetal/fisiopatología , Isoproterenol/administración & dosificación , Embarazo , Ovinos
5.
Am J Physiol Regul Integr Comp Physiol ; 319(5): R541-R550, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32877241

RESUMEN

Fetal heart rate variability (FHRV) is a widely used index of intrapartum well being. Both arms of the autonomic system regulate FHRV under normoxic conditions in the antenatal period. However, autonomic control of FHRV during labor when the fetus is exposed to repeated, brief hypoxemia during uterine contractions is poorly understood. We have previously shown that the sympathetic nervous system (SNS) does not regulate FHRV during labor-like hypoxia. We therefore investigated the hypothesis that the parasympathetic system is the main mediator of intrapartum FHRV. Twenty-six chronically instrumented fetal sheep at 0.85 of gestation received either bilateral cervical vagotomy (n = 7), atropine sulfate (n = 7), or sham treatment (control, n = 12), followed by three 1-min complete umbilical cord occlusions (UCOs) separated by 4-min reperfusion periods. Parasympathetic blockade reduced three measures of FHRV before UCOs (all P < 0.01). Between UCOs, atropine and vagotomy were associated with marked tachycardia (both P < 0.005), suppressed measures of FHRV (all P < 0.01), and abolished FHRV on visual inspection compared with the control group. Tachycardia in the atropine and vagotomy groups resolved over the first 10 min after the final UCO, in association with evidence that the SNS contribution to FHRV progressively returned during this time. Our findings support that SNS control of FHRV is acutely suppressed for at least 4 min after a deep intrapartum deceleration and takes 5-10 min to recover. The parasympathetic system is therefore likely to be the key mediator of FHRV once frequent FHR decelerations are established during labor.


Asunto(s)
Frecuencia Cardíaca Fetal , Sistema Nervioso Parasimpático/fisiología , Ovinos , Cordón Umbilical/irrigación sanguínea , Animales , Desaceleración , Femenino , Hipoxia Fetal/fisiopatología , Embarazo
6.
Am J Physiol Regul Integr Comp Physiol ; 319(1): R123-R131, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32491938

RESUMEN

Fetal heart rate (FHR) variability (FHRV) and ST segment morphology are potential clinical indices of fetal well-being during labor. ß-Adrenergic stimulation by circulating catecholamines has been hypothesized to contribute to both FHRV and ST segment morphology during labor, but this has not been tested during brief repeated fetal hypoxemia that is characteristic of labor. Near-term fetal sheep (0.85 gestation) received propranolol (ß-adrenergic blockade; n = 10) or saline (n = 7) 30 min before being exposed to three 2-min complete umbilical cord occlusions (UCOs) separated by 3-min reperfusions. T/QRS ratio was calculated throughout UCOs and reperfusion periods, and measures of FHRV (RMSSD, SDNN, and STV) were calculated between UCOs. During the baseline period, before the start of UCOs, propranolol was associated with reduced FHR, SDNN, and STV but did not affect RMSSD or T/QRS ratio. UCOs were associated with rapid FHR decelerations and increased T/QRS ratio; propranolol significantly reduced FHR during UCOs and was associated with a slower rise in T/QRS ratio during the first UCOs, without affecting the maximal rise or T/QRS ratio during the second and third UCO. Between UCOs propranolol reduced FHR and T/QRS ratio but did not affect any measure of FHRV. These data demonstrate that circulating catecholamines do not contribute to FHRV during labor-like hypoxemia. Furthermore, circulating catecholamines did not contribute to the major rise in T/QRS ratio during labor-like hypoxemia but may regulate T/QRS ratio between brief hypoxemia.


Asunto(s)
Catecolaminas/fisiología , Frecuencia Cardíaca Fetal/fisiología , Oveja Doméstica/fisiología , Cordón Umbilical/fisiología , Agonistas Adrenérgicos beta/farmacología , Antagonistas Adrenérgicos beta/farmacología , Adulto , Animales , Catecolaminas/sangre , Electrocardiografía , Femenino , Hipoxia Fetal/fisiopatología , Humanos , Hipoxia/fisiopatología , Trabajo de Parto , Embarazo , Propranolol/farmacología
7.
J Physiol ; 597(23): 5535-5548, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31529698

RESUMEN

KEY POINTS: •Therapeutic hypothermia needs to be started as early as possible in the first 6 h after acute injury caused by hypoxia-ischaemia (HI), but the severity and timing of HI are often unclear. In this study we evaluated whether measures of heart rate variability (HRV) might provide early biomarkers of HI. •The duration but not magnitude of suppression of HRV power and conversely increased sample entropy of the heart rate were associated with severity of HI, such that changes in the first 3 h did not discriminate between groups. •Relative changes in HRV power bands showed different patterns between groups and therefore may have the potential to evaluate the severity of HI. •Aberrant fetal heart rate patterns and increased arginine vasopressin levels in the first hour after moderate and severe HI were correlated with loss of EEG power after 3 days' recovery, suggesting potential utility as early biomarkers of outcome. ABSTRACT: Therapeutic hypothermia is partially neuroprotective after acute injury caused by hypoxia-ischaemia (HI), likely because the timing and severity of HI are often unclear, making timely recruitment for treatment challenging. We evaluated the utility of changes in heart rate variability (HRV) after HI as biomarkers of the timing and severity of acute HI. Chronically instrumented fetal sheep at 0.85 gestational age were exposed to different durations of umbilical cord occlusion to produce mild (n = 6), moderate (n = 8) or severe HI (n = 8) or to sham occlusion (n = 5). Heart rate (HR) and HRV indices were assessed until 72 h after HI. All HI groups showed suppressed very low frequency HRV power and elevated sample entropy for the first 3 h; more prolonged changes were associated with greater severity of HI. Analysis of relative changes in spectral power showed that the moderate and severe groups showed a shift towards higher HRV frequencies, which was most marked after severe HI. This shift was associated with abnormal rhythmic HR patterns including sinusoidal patterns in the first hour after HI, and with elevated plasma levels of arginine vasopressin, which were correlated with subsequent loss of EEG power by day 3. In conclusion, absolute changes in HRV power in the first 3 h after acute HI were not significantly related to the severity of HI. The intriguing relative shift in spectral power towards higher frequencies likely reflects greater autonomic dysfunction after severe HI. However, sinusoidal HR patterns and elevated vasopressin levels may have utility as biomarkers of severe HI.


Asunto(s)
Frecuencia Cardíaca Fetal , Hipoxia-Isquemia Encefálica/fisiopatología , Animales , Presión Arterial , Electroencefalografía , Hipotermia Inducida , Hipoxia-Isquemia Encefálica/terapia , Ovinos
9.
J Physiol ; 596(23): 6093-6104, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29315570

RESUMEN

KEY POINTS: Fetal heart rate variability is a critical index of fetal wellbeing. Suppression of heart rate variability may provide prognostic information on the risk of hypoxic-ischaemic brain injury after birth. In the present study, we report the evolution of fetal heart rate variability after both mild and severe hypoxia-ischaemia. Both mild and severe hypoxia-ischaemia were associated with an initial, brief suppression of multiple measures of heart rate variability. This was followed by normal or increased levels of heart rate variability during the latent phase of injury. Severe hypoxia-ischaemia was subsequently associated with the prolonged suppression of measures of heart rate variability during the secondary phase of injury, which is the period of time when brain injury is no longer treatable. These findings suggest that a biphasic pattern of heart rate variability may be an early marker of brain injury when treatment or intervention is probably most effective. ABSTRACT: Hypoxia-ischaemia (HI) is a major contributor to preterm brain injury, although there are currently no reliable biomarkers for identifying infants who are at risk. We tested the hypothesis that fetal heart rate (FHR) and FHR variability (FHRV) would identify evolving brain injury after HI. Fetal sheep at 0.7 of gestation were subjected to either 15 (n = 10) or 25 min (n = 17) of complete umbilical cord occlusion or sham occlusion (n = 12). FHR and four measures of FHRV [short-term variation, long-term variation, standard deviation of normal to normal R-R intervals (SDNN), root mean square of successive differences) were assessed until 72 h after HI. All measures of FHRV were suppressed for the first 3-4 h in the 15 min group and 1-2 h in the 25 min group. Measures of FHRV recovered to control levels by 4 h in the 15 min group, whereas the 25 min group showed tachycardia and an increase in short-term variation and SDNN from 4 to 6 h after occlusion. The measures of FHRV then progressively declined in the 25 min group and became profoundly suppressed from 18 to 48 h. A partial recovery of FHRV measures towards control levels was observed in the 25 min group from 49 to 72 h. These findings illustrate the complex regulation of FHRV after both mild and severe HI and suggest that the longitudinal analysis of FHR and FHRV after HI may be able to help determine the timing and severity of preterm HI.


Asunto(s)
Lesiones Encefálicas/fisiopatología , Frecuencia Cardíaca Fetal , Hipoxia-Isquemia Encefálica/fisiopatología , Animales , Femenino , Feto/fisiología , Masculino , Embarazo , Ovinos
12.
Sci Rep ; 12(1): 1771, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35110628

RESUMEN

Perinatal infection/inflammation can trigger preterm birth and contribute to neurodevelopmental disability. There are currently no sensitive, specific methods to identify perinatal infection. We investigated the utility of time, frequency and non-linear measures of fetal heart rate (FHR) variability (FHRV) to identify either progressive or more rapid inflammation. Chronically instrumented preterm fetal sheep were randomly assigned to one of three different 5d continuous i.v. infusions: 1) control (saline infusions; n = 10), 2) progressive lipopolysaccharide (LPS; 200 ng/kg over 24 h, doubled every 24 h for 5d, n = 8), or 3) acute-on-chronic LPS (100 ng/kg over 24 h then 250 ng/kg/24 h for 4d plus 1 µg boluses at 48, 72, and 96 h, n = 9). Both LPS protocols triggered transient increases in multiple measures of FHRV at the onset of infusions. No FHRV or physiological changes occurred from 12 h after starting progressive LPS infusions. LPS boluses during the acute-on-chronic protocol triggered transient hypotension, tachycardia and an initial increase in multiple time and frequency domain measures of FHRV, with an asymmetric FHR pattern of predominant decelerations. Following resolution of hypotension after the second and third LPS boluses, all frequencies of FHRV became suppressed. These data suggest that FHRV may be a useful biomarker of rapid but not progressive preterm infection/inflammation.


Asunto(s)
Feto/fisiopatología , Frecuencia Cardíaca Fetal , Inflamación/diagnóstico , Lipopolisacáridos/toxicidad , Nacimiento Prematuro/patología , Taquicardia/diagnóstico , Animales , Animales Recién Nacidos , Femenino , Inflamación/inducido químicamente , Masculino , Embarazo , Nacimiento Prematuro/etiología , Ovinos , Taquicardia/inducido químicamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA