Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
New Phytol ; 209(1): 252-64, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26224411

RESUMEN

Most plastid isoprenoids, including photosynthesis-related metabolites such as carotenoids and the side chain of chlorophylls, tocopherols (vitamin E), phylloquinones (vitamin K), and plastoquinones, derive from geranylgeranyl diphosphate (GGPP) synthesized by GGPP synthase (GGPPS) enzymes. Seven out of 10 functional GGPPS isozymes in Arabidopsis thaliana reside in plastids. We aimed to address the function of different GGPPS paralogues for plastid isoprenoid biosynthesis. We constructed a gene co-expression network (GCN) using GGPPS paralogues as guide genes and genes from the upstream and downstream pathways as query genes. Furthermore, knock-out and/or knock-down ggpps mutants were generated and their growth and metabolic phenotypes were analyzed. Also, interacting protein partners of GGPPS11 were searched for. Our data showed that GGPPS11, encoding the only plastid isozyme essential for plant development, functions as a hub gene among GGPPS paralogues and is required for the production of all major groups of plastid isoprenoids. Furthermore, we showed that the GGPPS11 protein physically interacts with enzymes that use GGPP for the production of carotenoids, chlorophylls, tocopherols, phylloquinone, and plastoquinone. GGPPS11 is a hub isozyme required for the production of most photosynthesis-related isoprenoids. Both gene co-expression and protein-protein interaction likely contribute to the channeling of GGPP by GGPPS11.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Terpenos/metabolismo , Transferasas Alquil y Aril/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Carotenoides/metabolismo , Clorofila/metabolismo , Isoenzimas , Fenotipo , Fotosíntesis , Plastidios/enzimología , Fosfatos de Poliisoprenilo/metabolismo , Mapeo de Interacción de Proteínas
2.
Plant Mol Biol ; 82(4-5): 393-416, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23729351

RESUMEN

Geranylgeranyl diphosphate (GGPP) is a key precursor of various isoprenoids that have diverse functions in plant metabolism and development. The annotation of the Arabidopsis thaliana genome predicts 12 genes to encode geranylgeranyl diphosphate synthases (GGPPS). In this study we analyzed GGPPS activity as well as the subcellular localization and tissue-specific expression of the entire protein family in A. thaliana. GGPPS2 (At2g18620), GGPPS3 (At2g18640), GGPPS6 (At3g14530), GGPPS7 (At3g14550), GGPPS8 (At3g20160), GGPPS9 (At3g29430), GGPPS10 (At3g32040) and GGPPS11 (At4g36810) showed GGPPS activity in Escherichia coli, similar to activities reported earlier for GGPPS1 (At1g49530) and GGPPS4 (At2g23800) (Zhu et al. in Plant Cell Physiol 38(3):357-361, 1997a; Plant Mol Biol 35(3):331-341, b). GGPPS12 (At4g38460) did not produce GGPP in E. coli. Based on DNA sequence analysis we propose that GGPPS5 (At3g14510) is a pseudogene. GGPPS-GFP (green fluorescent protein) fusion proteins of the ten functional GGPP synthases localized to plastids, mitochondria and the endoplasmic reticulum, with the majority of the enzymes located in plastids. Gene expression analysis using quantitative real time-PCR, GGPPS promoter-GUS (ß-glucuronidase) assays and publicly available microarray data revealed a differential spatio-temporal expression of GGPPS genes. The results suggest that plastids and mitochondria are key subcellular compartments for the synthesis of ubiquitous GGPP-derived isoprenoid species. GGPPS11 and GGPPS1 are the major isozymes responsible for their biosynthesis. All remaining paralogs, encoding six plastidial isozymes and two cytosolic isozymes, were expressed in specific tissues and/or at specific developmental stages, suggesting their role in developmentally regulated isoprenoid biosynthesis. Our results show that of the 12 predicted GGPPS encoded in the A. thaliana genome 10 are functional proteins that can synthesize GGPP. Their specific subcellular location and differential expression pattern suggest subfunctionalization in providing GGPP to specific tissues, developmental stages, or metabolic pathways.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Farnesiltransferasa/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Farnesiltransferasa/química , Farnesiltransferasa/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Reacción en Cadena de la Polimerasa
3.
J Exp Bot ; 63(10): 3749-64, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22442426

RESUMEN

Little is known about the range and the genetic bases of naturally occurring variation for flavonoids. Using Arabidopsis thaliana seed as a model, the flavonoid content of 41 accessions and two recombinant inbred line (RIL) sets derived from divergent accessions (Cvi-0×Col-0 and Bay-0×Shahdara) were analysed. These accessions and RILs showed mainly quantitative rather than qualitative changes. To dissect the genetic architecture underlying these differences, a quantitative trait locus (QTL) analysis was performed on the two segregating populations. Twenty-two flavonoid QTLs were detected that accounted for 11-64% of the observed trait variations, only one QTL being common to both RIL sets. Sixteen of these QTLs were confirmed and coarsely mapped using heterogeneous inbred families (HIFs). Three genes, namely TRANSPARENT TESTA (TT)7, TT15, and MYB12, were proposed to underlie their variations since the corresponding mutants and QTLs displayed similar specific flavonoid changes. Interestingly, most loci did not co-localize with any gene known to be involved in flavonoid metabolism. This latter result shows that novel functions have yet to be characterized and paves the way for their isolation.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Flavonoides/metabolismo , Variación Genética , Metaboloma , Sitios de Carácter Cuantitativo , Arabidopsis/clasificación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cruzamiento , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Filogenia , Semillas/genética , Semillas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA