Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Development ; 147(10)2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32366678

RESUMEN

Directional migration during embryogenesis and tumor progression faces the challenge that numerous external signals need to converge to precisely control cell movement. The Rho guanine exchange factor (GEF) Trio is especially well suited to relay signals, as it features distinct catalytic domains to activate Rho GTPases. Here, we show that Trio is required for Xenopus cranial neural crest (NC) cell migration and cartilage formation. Trio cell-autonomously controls protrusion formation of NC cells and Trio morphant NC cells show a blebbing phenotype. Interestingly, the Trio GEF2 domain is sufficient to rescue protrusion formation and migration of Trio morphant NC cells. We show that this domain interacts with the DEP/C-terminus of Dishevelled (DVL). DVL - but not a deletion construct lacking the DEP domain - is able to rescue protrusion formation and migration of Trio morphant NC cells. This is likely mediated by activation of Rac1, as we find that DVL rescues Rac1 activity in Trio morphant embryos. Thus, our data provide evidence for a novel signaling pathway, whereby Trio controls protrusion formation of cranial NC cells by interacting with DVL to activate Rac1.


Asunto(s)
Movimiento Celular/genética , Proteínas Dishevelled/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Cresta Neural/citología , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología , Animales , Proteínas Dishevelled/genética , Factores de Intercambio de Guanina Nucleótido/genética , Células HEK293 , Humanos , Cresta Neural/embriología , Fenotipo , Plásmidos/genética , Unión Proteica/genética , Dominios Proteicos , Proteínas Serina-Treonina Quinasas/genética , Transfección , Proteínas de Xenopus/genética , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
2.
Genesis ; 52(2): 120-6, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24339193

RESUMEN

Protocadherins represent the biggest subgroup within the cadherin superfamily of transmembrane glycoproteins. In contrast to classical type I cadherins, protocadherins in general exhibit only moderate adhesive activity. During embryogenesis, they are involved in cell signaling and regulate diverse morphogenetic processes, including morphogenetic movements during gastrulation and neural crest migration. The two protocadherins paraxial protocadherin (PAPC) and axial protocadherin (AXPC) are indispensable for proper gastrulation movements in Xenopus and zebrafish. The closest relative PCNS instead, is required for neural crest and somite formation. Here, we show that cranial neural crest (CNC) cells in addition to PCNS express PAPC, but not AXPC. Overexpression of PAPC resulted in comparable migration defects as knockdown of PCNS. Moreover, reconstitution experiments revealed that PAPC is able to replace PCNS in CNC cells, indicating that both protocadherins can regulate CNC migration.


Asunto(s)
Cadherinas/metabolismo , Cresta Neural/metabolismo , Precursores de Proteínas/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/embriología , Animales , Región Branquial/fisiología , Cadherinas/genética , Movimiento Celular , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Precursores de Proteínas/genética , Protocadherinas , Xenopus/metabolismo , Proteínas de Xenopus/genética
3.
PLoS One ; 8(12): e85717, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24392028

RESUMEN

Collective cell migration is an essential feature both in embryonic development and cancer progression. The molecular mechanisms of these coordinated directional cell movements still need to be elucidated. The migration of cranial neural crest (CNC) cells during embryogenesis is an excellent model for collective cell migration in vivo. These highly motile and multipotent cells migrate directionally on defined routes throughout the embryo. Interestingly, local cell-cell interactions seem to be the key force for directionality. CNC cells can change their migration direction by a repulsive cell response called contact inhibition of locomotion (CIL). Cell protrusions collapse upon homotypic cell-cell contact and internal repolarization leads to formation of new protrusions toward cell-free regions. Wnt/PCP signaling was shown to mediate activation of small RhoGTPase RhoA and inhibition of cell protrusions at the contact side. However, the mechanism how a cell recognizes the contact is poorly understood. Here, we demonstrate that Xenopus cadherin-11 (Xcad-11) mediated cell-cell adhesion is necessary in CIL for directional and collective migration of CNC cells. Reduction of Xcad-11 adhesive function resulted in higher invasiveness of CNC due to loss of CIL. Additionally, transplantation analyses revealed that CNC migratory behaviour in vivo is non-directional and incomplete when Xcad-11 adhesive function is impaired. Blocking Wnt/PCP signaling led to similar results underlining the importance of Xcad-11 in the mechanism of CIL and directional migration of CNC.


Asunto(s)
Cadherinas/metabolismo , Movimiento Celular , Inhibición de Contacto , Cresta Neural/citología , Xenopus laevis/embriología , Animales , Adhesión Celular , Cresta Neural/embriología , Cresta Neural/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA