Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 310
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 182(4): 843-854.e12, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32673567

RESUMEN

The SARS-CoV-2 pandemic has unprecedented implications for public health, social life, and the world economy. Because approved drugs and vaccines are limited or not available, new options for COVID-19 treatment and prevention are in high demand. To identify SARS-CoV-2-neutralizing antibodies, we analyzed the antibody response of 12 COVID-19 patients from 8 to 69 days after diagnosis. By screening 4,313 SARS-CoV-2-reactive B cells, we isolated 255 antibodies from different time points as early as 8 days after diagnosis. Of these, 28 potently neutralized authentic SARS-CoV-2 with IC100 as low as 0.04 µg/mL, showing a broad spectrum of variable (V) genes and low levels of somatic mutations. Interestingly, potential precursor sequences were identified in naive B cell repertoires from 48 healthy individuals who were sampled before the COVID-19 pandemic. Our results demonstrate that SARS-CoV-2-neutralizing antibodies are readily generated from a diverse pool of precursors, fostering hope for rapid induction of a protective immune response upon vaccination.


Asunto(s)
Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Antivirales/aislamiento & purificación , Infecciones por Coronavirus/inmunología , Neumonía Viral/inmunología , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/genética , Anticuerpos Antivirales/inmunología , Linfocitos B/inmunología , Betacoronavirus/inmunología , COVID-19 , Humanos , Región Variable de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/inmunología , Memoria Inmunológica , Estudios Longitudinales , Pandemias , SARS-CoV-2 , Hipermutación Somática de Inmunoglobulina
3.
Mol Cell ; 69(1): 136-145.e6, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29290611

RESUMEN

Transcription of the Ebola virus genome depends on the viral transcription factor VP30 in its unphosphorylated form, but the underlying molecular mechanism of VP30 dephosphorylation is unknown. Here we show that the Ebola virus nucleoprotein (NP) recruits the host PP2A-B56 protein phosphatase through a B56-binding LxxIxE motif and that this motif is essential for VP30 dephosphorylation and viral transcription. The LxxIxE motif and the binding site of VP30 in NP are in close proximity, and both binding sites are required for the dephosphorylation of VP30. We generate a specific inhibitor of PP2A-B56 and show that it suppresses Ebola virus transcription and infection. This work dissects the molecular mechanism of VP30 dephosphorylation by PP2A-B56, and it pinpoints this phosphatase as a potential target for therapeutic intervention.


Asunto(s)
Ebolavirus/metabolismo , Proteína Fosfatasa 2/metabolismo , Factores de Transcripción/genética , Transcripción Genética/genética , Proteínas Virales/genética , Replicación Viral/genética , Animales , Línea Celular Tumoral , Chlorocebus aethiops , Ebolavirus/genética , Células HEK293 , Células HeLa , Humanos , Nucleoproteínas , Fosforilación , Dominios y Motivos de Interacción de Proteínas/genética , Proteína Fosfatasa 2/antagonistas & inhibidores , ARN Viral/metabolismo , Células Vero
4.
EMBO J ; 40(18): e105658, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34260076

RESUMEN

The Ebola virus VP30 protein interacts with the viral nucleoprotein and with host protein RBBP6 via PPxPxY motifs that adopt non-canonical orientations, as compared to other proline-rich motifs. An affinity tag-purification mass spectrometry approach identified additional PPxPxY-containing host proteins hnRNP L, hnRNPUL1, and PEG10, as VP30 interactors. hnRNP L and PEG10, like RBBP6, inhibit viral RNA synthesis and EBOV infection, whereas hnRNPUL1 enhances. RBBP6 and hnRNP L modulate VP30 phosphorylation, increase viral transcription, and exert additive effects on viral RNA synthesis. PEG10 has more modest inhibitory effects on EBOV replication. hnRNPUL1 positively affects viral RNA synthesis but in a VP30-independent manner. Binding studies demonstrate variable capacity of the PPxPxY motifs from these proteins to bind VP30, define PxPPPPxY as an optimal binding motif, and identify the fifth proline and the tyrosine as most critical for interaction. Competition binding and hydrogen-deuterium exchange mass spectrometry studies demonstrate that each protein binds a similar interface on VP30. VP30 therefore presents a novel proline recognition domain that is targeted by multiple host proteins to modulate viral transcription.


Asunto(s)
Ebolavirus/fisiología , Fiebre Hemorrágica Ebola/metabolismo , Fiebre Hemorrágica Ebola/virología , Prolina/metabolismo , Tirosina/metabolismo , Proteínas Portadoras , Regulación Viral de la Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Unión Proteica , Replicación Viral
5.
J Virol ; 98(10): e0093524, 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39283124

RESUMEN

The large group of negative-strand RNA viruses (NSVs) comprises many important pathogens. To identify conserved patterns in host responses, we systematically compared changes in the cellular RNA levels after infection of human hepatoma cells with nine different NSVs of different virulence degrees. RNA sequencing experiments indicated that the amount of viral RNA in host cells correlates with the number of differentially expressed host cell transcripts. Time-resolved differential gene expression analysis revealed a common set of 178 RNAs that are regulated by all NSVs analyzed. A newly developed open access web application allows downloads and visualizations of all gene expression comparisons for individual viruses over time or between several viruses. Most of the genes included in the core set of commonly differentially expressed genes (DEGs) encode proteins that serve as membrane receptors, signaling proteins and regulators of transcription. They mainly function in signal transduction and control immunity, metabolism, and cell survival. One hundred sixty-five of the DEGs encode host proteins from which 47 have already been linked to the regulation of viral infections in previous studies and 89 proteins form a complex interaction network that may function as a core hub to control NSV infections.IMPORTANCEThe infection of cells with negative-strand RNA viruses leads to the differential expression of many host cell RNAs. The differential spectrum of virus-regulated RNAs reflects a large variety of events including anti-viral responses, cell remodeling, and cell damage. Here, these virus-specific differences and similarities in the regulated RNAs were measured in a highly standardized model. A newly developed app allows interested scientists a wide range of comparisons and visualizations.


Asunto(s)
ARN Viral , Humanos , ARN Viral/genética , ARN Viral/metabolismo , Virus ARN/genética , Interacciones Huésped-Patógeno/genética , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Línea Celular Tumoral , Infecciones por Virus ARN/virología , Análisis de Secuencia de ARN , Transducción de Señal
6.
J Infect Dis ; 230(2): e327-e332, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38195212

RESUMEN

Licensed vaccines against the Middle East respiratory syndrome coronavirus (MERS-CoV), an emerging pathogen of concern, are lacking. The modified vaccinia virus Ankara vector-based vaccine MVA-MERS-S, expressing the MERS-CoV-spike glycoprotein (MERS-S), is one of 3 candidate vaccines in clinical development and elicits robust humoral and cellular immunity. Here, we identified for the first time a MERS-S-specific CD8+ T-cell epitope in an HLA-A*03:01/HLA-B*35:01-positive vaccinee using a screening assay, intracellular cytokine staining, and in silico epitope prediction. As evidence from MERS-CoV infection suggests a protective role of long-lasting CD8+ T-cell responses, the identification of epitopes will facilitate longitudinal analyses of vaccine-induced T-cell immunity.


Asunto(s)
Linfocitos T CD8-positivos , Epítopos de Linfocito T , Coronavirus del Síndrome Respiratorio de Oriente Medio , Glicoproteína de la Espiga del Coronavirus , Vacunas Virales , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Epítopos de Linfocito T/inmunología , Linfocitos T CD8-positivos/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas Virales/inmunología , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Vacunación
7.
PLoS Pathog ; 18(7): e1010616, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35900983

RESUMEN

Filovirus-infected cells are characterized by typical cytoplasmic inclusion bodies (IBs) located in the perinuclear region. The formation of these IBs is induced mainly by the accumulation of the filoviral nucleoprotein NP, which recruits the other nucleocapsid proteins, the polymerase co-factor VP35, the polymerase L, the transcription factor VP30 and VP24 via direct or indirect protein-protein interactions. Replication of the negative-strand RNA genomes by the viral polymerase L and VP35 occurs in the IBs, resulting in the synthesis of positive-strand genomes, which are encapsidated by NP, thus forming ribonucleoprotein complexes (antigenomic RNPs). These newly formed antigenomic RNPs in turn serve as templates for the synthesis of negative-strand RNA genomes that are also encapsidated by NP (genomic RNPs). Still in the IBs, genomic RNPs mature into tightly packed transport-competent nucleocapsids (NCs) by the recruitment of the viral protein VP24. NCs are tightly coiled left-handed helices whose structure is mainly determined by the multimerization of NP at its N-terminus, and these helices form the inner layer of the NCs. The RNA genome is fixed by 2 lobes of the NP N-terminus and is thus guided by individual NP molecules along the turns of the helix. Direct interaction of the NP C-terminus with the VP35 and VP24 molecules forms the outer layer of the NCs. Once formed, NCs that are located at the border of the IBs recruit actin polymerization machinery to one of their ends to drive their transport to budding sites for their envelopment and final release. Here, we review the current knowledge on the structure, assembly, and transport of filovirus NCs.


Asunto(s)
Ebolavirus , Cuerpos de Inclusión Viral , Marburgvirus , Humanos , Ebolavirus/genética , Marburgvirus/genética , Nucleocápside/metabolismo , Ribonucleoproteínas/metabolismo , ARN/metabolismo
9.
Mol Ther ; 31(2): 374-386, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36303436

RESUMEN

Emerging and re-emerging viruses, such as Zaire Ebola virus (EBOV), pose a global threat and require immediate countermeasures, including the rapid development of effective vaccines that are easy to manufacture. Synthetic self-amplifying RNAs (saRNAs) attend to these needs, being safe and strong immune stimulators that can be inexpensively produced in large quantities, using cell-free systems and good manufacturing practice. Here, the first goal was to develop and optimize an anti-EBOV saRNA-based vaccine in terms of its antigen composition and route of administration. Vaccinating mice with saRNAs expressing the EBOV glycoprotein (GP) alone or in combination with the nucleoprotein (NP) elicited antigen-specific immune responses. GP-specific antibodies showed neutralizing activity against EBOV. Strong CD4+ T cell response against NP and GP and CD8+ T cell response against NP were detected by ELISpot assays. Intramuscular vaccination with saRNAs conferred better immune response than intradermal. Finally, mice vaccinated in a prime-boost regimen with saRNAs encoding both GP and NP or with GP alone survived an EBOV infection. In addition, a single dose of GP and NP saRNAs was also protective against fatal EBOV infection. Overall, saRNAs expressing viral antigens represent a promising vaccine platform.


Asunto(s)
Vacunas contra el Virus del Ébola , Ebolavirus , Fiebre Hemorrágica Ebola , Animales , Ratones , Fiebre Hemorrágica Ebola/prevención & control , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Ebolavirus/genética , Glicoproteínas/genética , Vacunas contra el Virus del Ébola/genética
10.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34162739

RESUMEN

Severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) has emerged as the infectious agent causing the pandemic coronavirus disease 2019 (COVID-19) with dramatic consequences for global human health and economics. Previously, we reached clinical evaluation with our vector vaccine based on modified vaccinia virus Ankara (MVA) against the Middle East respiratory syndrome coronavirus (MERS-CoV), which causes an infection in humans similar to SARS and COVID-19. Here, we describe the construction and preclinical characterization of a recombinant MVA expressing full-length SARS-CoV-2 spike (S) protein (MVA-SARS-2-S). Genetic stability and growth characteristics of MVA-SARS-2-S, plus its robust expression of S protein as antigen, make it a suitable candidate vaccine for industrial-scale production. Vaccinated mice produced S-specific CD8+ T cells and serum antibodies binding to S protein that neutralized SARS-CoV-2. Prime-boost vaccination with MVA-SARS-2-S protected mice sensitized with a human ACE2-expressing adenovirus from SARS-CoV-2 infection. MVA-SARS-2-S is currently being investigated in a phase I clinical trial as aspirant for developing a safe and efficacious vaccine against COVID-19.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Vacunas contra la COVID-19/normas , Relación Dosis-Respuesta Inmunológica , Humanos , Ratones , Ratones Endogámicos BALB C , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Linfocitos T , Vacunación , Virus Vaccinia
11.
Sensors (Basel) ; 24(4)2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38400333

RESUMEN

(1) Background: Occupational fatigue is a primary factor leading to work-related musculoskeletal disorders (WRMSDs). Kinematic and kinetic experimental studies have been able to identify indicators of WRMSD, but research addressing real-world workplace scenarios is lacking. Hence, the authors of this study aimed to assess the influence of physical strain on the Borg CR-10 body map, ergonomic risk scores, and foot pressure in a real-world setting. (2) Methods: Twenty-four participants (seventeen men and seven women) were included in this field study. Inertial measurement units (IMUs) (n = 24) and in-shoe plantar pressure measurements (n = 18) captured the workload of production and office workers at the beginning of their work shift and three hours later, working without any break. In addition to the two 12 min motion capture processes, a Borg CR-10 body map and fatigue visual analog scale (VAS) were applied twice. Kinematic and kinetic data were processed using MATLAB and SPSS software, resulting in scores representing the relative distribution of the Rapid Upper Limb Assessment (RULA) and Computer-Assisted Recording and Long-Term Analysis of Musculoskeletal Load (CUELA), and in-shoe plantar pressure. (3) Results: Significant differences were observed between the two measurement times of physical exertion and fatigue, but not for ergonomic risk scores. Contrary to the hypothesis of the authors, there were no significant differences between the in-shoe plantar pressures. Significant differences were observed between the dominant and non-dominant sides for all kinetic variables. (4) Conclusions: The posture scores of RULA and CUELA and in-shoe plantar pressure side differences were a valuable basis for adapting one-sided requirements in the work process of the workers. Traditional observational methods must be adapted more sensitively to detect kinematic deviations at work. The results of this field study enhance our knowledge about the use and benefits of sensors for ergonomic risk assessments and interventions.


Asunto(s)
Enfermedades Profesionales , Zapatos , Masculino , Humanos , Femenino , Enfermedades Profesionales/diagnóstico , Ergonomía/métodos , Factores de Riesgo , Fatiga
12.
Sensors (Basel) ; 24(13)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-39000879

RESUMEN

Competitive climbers engage in highly structured training regimens to achieve peak performance levels, with efficient time management as a critical aspect. Neuromuscular electrical stimulation (NMES) training can close the gap between time-efficient conditioning training and achieving optimal prerequisites for peak climbing-specific performances. Therefore, we examined potential neuromuscular adaptations resulting from the NMFES intervention by analyzing the efficacy of twice-weekly NMES-supported fingerboard (hang board) training compared with thrice-weekly conventional fingerboard training over 7 training weeks in enhancing climbing-specific endurance among intermediate to advanced climbers. Participants were randomly divided into the NMES and control groups. Eighteen participants completed the study (14 male, 4 female; mean age: 25.7 ± 5.3 years; mean climbing experience: 6.4 ± 3.4 years). Endurance was assessed by measuring the maximal time athletes could support their body weight (hanging to exhaustion) on a 20 mm-deep ledge at three intervals: pre-, in-between- (after 4 weeks of training), and post-training (after 7 weeks of training). The findings revealed that despite the lower training volume in the NMES group, no significant differences were observed between the NMES and control groups in climbing-specific endurance. Both groups exhibited notable improvements in endurance, particularly after the in-between test. Consequently, a twice-weekly NMES-supported fingerboard training regimen demonstrated non-inferiority to a thrice-weekly conventional training routine. Incorporating NMES into fingerboard workouts could offer time-saving benefits.


Asunto(s)
Estimulación Eléctrica , Dedos , Resistencia Física , Humanos , Masculino , Femenino , Adulto , Resistencia Física/fisiología , Dedos/fisiología , Estimulación Eléctrica/métodos , Adulto Joven , Atletas , Montañismo/fisiología
13.
PLoS Pathog ; 17(10): e1010002, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34699554

RESUMEN

Transcription of non-segmented negative sense (NNS) RNA viruses follows a stop-start mechanism and is thought to be initiated at the genome's very 3'-end. The synthesis of short abortive leader transcripts (leaderRNAs) has been linked to transcription initiation for some NNS viruses. Here, we identified the synthesis of abortive leaderRNAs (as well as trailer RNAs) that are specifically initiated opposite to (anti)genome nt 2; leaderRNAs are predominantly terminated in the region of nt ~ 60-80. LeaderRNA synthesis requires hexamer phasing in the 3'-leader promoter. We determined a steady-state NP mRNA:leaderRNA ratio of ~10 to 30-fold at 48 h after Ebola virus (EBOV) infection, and this ratio was higher (70 to 190-fold) for minigenome-transfected cells. LeaderRNA initiation at nt 2 and the range of termination sites were not affected by structure and length variation between promoter elements 1 and 2, nor the presence or absence of VP30. Synthesis of leaderRNA is suppressed in the presence of VP30 and termination of leaderRNA is not mediated by cryptic gene end (GE) signals in the 3'-leader promoter. We further found different genomic 3'-end nucleotide requirements for transcription versus replication, suggesting that promoter recognition is different in the replication and transcription mode of the EBOV polymerase. We further provide evidence arguing against a potential role of EBOV leaderRNAs as effector molecules in innate immunity. Taken together, our findings are consistent with a model according to which leaderRNAs are abortive replicative RNAs whose synthesis is not linked to transcription initiation. Rather, replication and transcription complexes are proposed to independently initiate RNA synthesis at separate sites in the 3'-leader promoter, i.e., at the second nucleotide of the genome 3'-end and at the more internally positioned transcription start site preceding the first gene, respectively, as reported for Vesicular stomatitis virus.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Ebolavirus/genética , ARN Viral/genética , Transcripción Genética/genética , Ebolavirus/enzimología
14.
J Med Virol ; 95(8): e29032, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37581876

RESUMEN

The circulating nucleocapsid (NCP) antigen of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is detectable in coronavirus disease-2019 (COVID-19) patients. To better understand the biology of disease severity, we investigated NCP clearance kinetics in hospitalized COVID-19 patients. Serum NCP was quantified using a commercial NCP-specific enzyme-linked immunoassay in hospitalized COVID-19 patients (n = 63) during their hospital stay. Results were correlated to COVID-19 disease severity, inflammation parameters, antibody response, and results of SARS-CoV-2 PCR from nasopharyngeal swabs. We demonstrate that NCP antigen levels in serum remained elevated in 21/45 (46.7%) samples from patients in intensive care units (ICU) after >8 days postdiagnosis. The proportion of ICU patients with detectable antigenemia declined only gradually from 84.6% to 25.0% over several weeks. This was in contrast to complete NCP clearance in all non-ICU patients after 8 days, and also in contrast to mucosal clearance of the virus as measured by PCR. Antigen clearance was associated with higher IgG against S1 but not NCP. Clearance of NCP antigenemia is delayed in >40% of severely ill COVID-19 patients. Thus, NCP antigenemia detected after 8 days post COVID-19 diagnosis is a characteristic of patients requiring intensive care. Prospective trials should further investigate NCP antigen clearance kinetics as a mechanistic biomarker.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Prueba de COVID-19 , Cinética , Estudios Prospectivos , Anticuerpos Antivirales , Nucleocápside
15.
Nature ; 551(7680): 394-397, 2017 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-29144446

RESUMEN

Ebola and Marburg viruses are filoviruses: filamentous, enveloped viruses that cause haemorrhagic fever. Filoviruses are within the order Mononegavirales, which also includes rabies virus, measles virus, and respiratory syncytial virus. Mononegaviruses have non-segmented, single-stranded negative-sense RNA genomes that are encapsidated by nucleoprotein and other viral proteins to form a helical nucleocapsid. The nucleocapsid acts as a scaffold for virus assembly and as a template for genome transcription and replication. Insights into nucleoprotein-nucleoprotein interactions have been derived from structural studies of oligomerized, RNA-encapsidating nucleoprotein, and cryo-electron microscopy of nucleocapsid or nucleocapsid-like structures. There have been no high-resolution reconstructions of complete mononegavirus nucleocapsids. Here we apply cryo-electron tomography and subtomogram averaging to determine the structure of Ebola virus nucleocapsid within intact viruses and recombinant nucleocapsid-like assemblies. These structures reveal the identity and arrangement of the nucleocapsid components, and suggest that the formation of an extended α-helix from the disordered carboxy-terminal region of nucleoprotein-core links nucleoprotein oligomerization, nucleocapsid condensation, RNA encapsidation, and accessory protein recruitment.


Asunto(s)
Microscopía por Crioelectrón , Ebolavirus/química , Ebolavirus/ultraestructura , Tomografía con Microscopio Electrónico , Proteínas de la Nucleocápside/ultraestructura , Nucleocápside/química , Nucleocápside/ultraestructura , Animales , Chlorocebus aethiops , Células HEK293 , Humanos , Marburgvirus/química , Modelos Moleculares , Conformación Molecular , Proteínas de la Nucleocápside/química , ARN Viral/química , ARN Viral/ultraestructura , Células Vero
16.
RNA ; 26(4): 439-453, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31924730

RESUMEN

The genomic, bipartite replication promoter of Ebola virus (EBOV) consists of elements 1 (PE1) and 2 (PE2). PE1 (55 nt at the 3'-terminus) is separated from PE2 (harboring eight 3'-UN5 hexamers) by the transcription start sequence (TSS) of the first nucleoprotein (NP) gene plus a spacer sequence. Insertions or deletions in the spacer were reported to support genome replication if comprising 6 or 12, but not 1/2/3/5/9 nt. This gave rise to the formulation of the "rule of 6" for the EBOV replication promoter. Here, we studied the impact of such hexamer phasing on viral transcription using a series of replication-competent and -deficient monocistronic minigenomes, in which the spacer of the NP gene was mutated or replaced with that of internal EBOV genes and mutated variants thereof. Beyond reporter gene assays, we conducted qRT-PCR to determine the levels of mRNA, genomic and antigenomic RNA. We demonstrate that hexamer phasing is also essential for viral transcription, that UN5 hexamer periodicity extends into PE1 and that the spacer region can be expanded by 48 nt without losses of transcriptional activity. Making the UN5 hexamer phasing continuous between PE1 and PE2 enhanced the efficiency of transcription and replication. We show that the 2 nt preceding the TSS are essential for transcription. We further propose a role for UN5 hexamer phasing in positioning NP during initiation of RNA synthesis, or in dissociation/reassociation of NP from the template RNA strand while threading the RNA through the active site of the elongating polymerase during replication and transcription.


Asunto(s)
Regiones no Traducidas 3' , Ebolavirus/genética , Iniciación de la Transcripción Genética , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Genes Virales , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Sitio de Iniciación de la Transcripción
17.
J Virol ; 95(5)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33268520

RESUMEN

Viral transcription and replication of Ebola virus (EBOV) is balanced by transcription factor VP30, an RNA binding protein. An RNA hairpin at the transcription start site (TSS) of the first gene (NP hairpin) in the 3'-leader promoter is thought to mediate the VP30 dependency of transcription. Here, we investigated the constraints of VP30 dependency using a series of monocistronic minigenomes with sequence, structure and length deviations from the native NP hairpin. Hairpin stabilizations decreased while destabilizations increased transcription in the absence of VP30, but in all cases, transcription activity was higher in the presence versus absence of VP30. This also pertains to a mutant that is unable to form any RNA secondary structure at the TSS, demonstrating that the activity of VP30 is not simply determined by the capacity to form a hairpin structure at the TSS. Introduction of continuous 3'-UN5 hexamer phasing between promoter elements PE1 and PE2 by a single point mutation in the NP hairpin boosted VP30-independent transcription. Moreover, this point mutation, but also hairpin stabilizations, impaired the relative increase of replication in the absence of VP30. Our results suggest that the native NP hairpin is optimized for tight regulation by VP30 while avoiding an extent of hairpin stability that impairs viral transcription, as well as for enabling the switch from transcription to replication when VP30 is not part of the polymerase complex.IMPORTANCE A detailed understanding is lacking how the Ebola virus (EBOV) protein VP30 regulates activity of the viral polymerase complex. Here, we studied how RNA sequence, length and structure at the transcription start site (TSS) in the 3'-leader promoter influence the impact of VP30 on viral polymerase activity. We found that hairpin stabilizations tighten the VP30 dependency of transcription but reduce transcription efficiency and attenuate the switch to replication in the absence of VP30. Upon hairpin destabilization, VP30-independent transcription - already weakly detectable at the native promoter - increases, but never reaches the same extent as in the presence of VP30. We conclude that the native hairpin structure involving the TSS (i) establishes an optimal balance between efficient transcription and tight regulation by VP30, (ii) is linked to hexamer phasing in the promoter, and (iii) favors the switch to replication when VP30 is absent.

18.
Lancet ; 396(10249): 467-478, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32702298

RESUMEN

BACKGROUND: The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) might be curtailed by vaccination. We assessed the safety, reactogenicity, and immunogenicity of a viral vectored coronavirus vaccine that expresses the spike protein of SARS-CoV-2. METHODS: We did a phase 1/2, single-blind, randomised controlled trial in five trial sites in the UK of a chimpanzee adenovirus-vectored vaccine (ChAdOx1 nCoV-19) expressing the SARS-CoV-2 spike protein compared with a meningococcal conjugate vaccine (MenACWY) as control. Healthy adults aged 18-55 years with no history of laboratory confirmed SARS-CoV-2 infection or of COVID-19-like symptoms were randomly assigned (1:1) to receive ChAdOx1 nCoV-19 at a dose of 5 × 1010 viral particles or MenACWY as a single intramuscular injection. A protocol amendment in two of the five sites allowed prophylactic paracetamol to be administered before vaccination. Ten participants assigned to a non-randomised, unblinded ChAdOx1 nCoV-19 prime-boost group received a two-dose schedule, with the booster vaccine administered 28 days after the first dose. Humoral responses at baseline and following vaccination were assessed using a standardised total IgG ELISA against trimeric SARS-CoV-2 spike protein, a muliplexed immunoassay, three live SARS-CoV-2 neutralisation assays (a 50% plaque reduction neutralisation assay [PRNT50]; a microneutralisation assay [MNA50, MNA80, and MNA90]; and Marburg VN), and a pseudovirus neutralisation assay. Cellular responses were assessed using an ex-vivo interferon-γ enzyme-linked immunospot assay. The co-primary outcomes are to assess efficacy, as measured by cases of symptomatic virologically confirmed COVID-19, and safety, as measured by the occurrence of serious adverse events. Analyses were done by group allocation in participants who received the vaccine. Safety was assessed over 28 days after vaccination. Here, we report the preliminary findings on safety, reactogenicity, and cellular and humoral immune responses. The study is ongoing, and was registered at ISRCTN, 15281137, and ClinicalTrials.gov, NCT04324606. FINDINGS: Between April 23 and May 21, 2020, 1077 participants were enrolled and assigned to receive either ChAdOx1 nCoV-19 (n=543) or MenACWY (n=534), ten of whom were enrolled in the non-randomised ChAdOx1 nCoV-19 prime-boost group. Local and systemic reactions were more common in the ChAdOx1 nCoV-19 group and many were reduced by use of prophylactic paracetamol, including pain, feeling feverish, chills, muscle ache, headache, and malaise (all p<0·05). There were no serious adverse events related to ChAdOx1 nCoV-19. In the ChAdOx1 nCoV-19 group, spike-specific T-cell responses peaked on day 14 (median 856 spot-forming cells per million peripheral blood mononuclear cells, IQR 493-1802; n=43). Anti-spike IgG responses rose by day 28 (median 157 ELISA units [EU], 96-317; n=127), and were boosted following a second dose (639 EU, 360-792; n=10). Neutralising antibody responses against SARS-CoV-2 were detected in 32 (91%) of 35 participants after a single dose when measured in MNA80 and in 35 (100%) participants when measured in PRNT50. After a booster dose, all participants had neutralising activity (nine of nine in MNA80 at day 42 and ten of ten in Marburg VN on day 56). Neutralising antibody responses correlated strongly with antibody levels measured by ELISA (R2=0·67 by Marburg VN; p<0·001). INTERPRETATION: ChAdOx1 nCoV-19 showed an acceptable safety profile, and homologous boosting increased antibody responses. These results, together with the induction of both humoral and cellular immune responses, support large-scale evaluation of this candidate vaccine in an ongoing phase 3 programme. FUNDING: UK Research and Innovation, Coalition for Epidemic Preparedness Innovations, National Institute for Health Research (NIHR), NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and the German Center for Infection Research (DZIF), Partner site Gießen-Marburg-Langen.


Asunto(s)
Betacoronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Inmunogenicidad Vacunal , Pandemias/prevención & control , Neumonía Viral/prevención & control , Vacunas Virales/efectos adversos , Vacunas Virales/inmunología , Acetaminofén/uso terapéutico , Adenovirus de los Simios/genética , Adulto , Analgésicos no Narcóticos/uso terapéutico , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19 , Vacunas contra la COVID-19 , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/inmunología , Femenino , Vectores Genéticos/administración & dosificación , Humanos , Inmunización Secundaria , Inmunoglobulina G/sangre , Masculino , Neumonía Viral/tratamiento farmacológico , SARS-CoV-2 , Método Simple Ciego , Glicoproteína de la Espiga del Coronavirus/inmunología , Linfocitos T/inmunología , Reino Unido , Vacunas Virales/administración & dosificación
19.
J Virol ; 94(9)2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32102881

RESUMEN

While it is well appreciated that late domains in the viral matrix proteins are crucial to mediate efficient virus budding, little is known about roles of late domains in the viral nucleocapsid proteins. Here, we characterized the functional relevance of a YxxL motif with potential late-domain function in the Ebola virus nucleocapsid protein VP24. Mutations in the YxxL motif had two opposing effects on the functions of VP24. On the one hand, the mutation affected the regulatory function of VP24 in viral RNA transcription and replication, which correlated with an increased incorporation of minigenomes into released transcription- and replication-competent virus-like particles (trVLPs). Consequently, cells infected with those trVLPs showed higher levels of viral transcription. On the other hand, mutations of the YxxL motif greatly impaired the intracellular transport of nucleocapsid-like structures (NCLSs) composed of the viral proteins NP, VP35, and VP24 and the length of released trVLPs. Attempts to rescue recombinant Ebola virus expressing YxxL-deficient VP24 failed, underlining the importance of this motif for the viral life cycle.IMPORTANCE Ebola virus (EBOV) causes a severe fever with high case fatality rates and, so far, no available specific therapy. Understanding the interplay between viral and host proteins is important to identify new therapeutic approaches. VP24 is one of the essential nucleocapsid components and is necessary to regulate viral RNA synthesis and condense viral nucleocapsids before their transport to the plasma membrane. Our functional analyses of the YxxL motif in VP24 suggested that it serves as an interface between nucleocapsid-like structures (NCLSs) and cellular proteins, promoting intracellular transport of NCLSs in an Alix-independent manner. Moreover, the YxxL motif is necessary for the inhibitory function of VP24 in viral RNA synthesis. A failure to rescue EBOV encoding VP24 with a mutated YxxL motif indicated that the integrity of the YxxL motif is essential for EBOV growth. Thus, this motif might represent a potential target for antiviral interference.


Asunto(s)
Ebolavirus/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Línea Celular , Genoma Viral/genética , Fiebre Hemorrágica Ebola/genética , Fiebre Hemorrágica Ebola/virología , Humanos , Nucleocápside/genética , Nucleocápside/metabolismo , ARN Viral/metabolismo , Virión/genética , Ensamble de Virus/genética , Replicación Viral/fisiología
20.
Immunity ; 37(5): 867-79, 2012 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-23142781

RESUMEN

The genome of vertebrates contains endogenous retroviruses (ERVs) that are largely nonfunctional relicts of ancestral germline infection by exogenous retroviruses. However, in some mouse strains ERVs are actively involved in disease. Here we report that nucleic acid-recognizing Toll-like receptors 3, 7, and 9 (TLR 3, TLR7, and TLR9) are essential for the control of ERVs. Loss of TLR7 function caused spontaneous retroviral viremia that coincided with the absence of ERV-specific antibodies. Importantly, additional TLR3 and TLR9 deficiency led to acute T cell lymphoblastic leukemia, underscoring a prominent role for TLR3 and TLR9 in surveillance of ERV-induced tumors. Experimental ERV infection induced a TLR3-, TLR7-, and TLR9-dependent group of "acute-phase" genes previously described in HIV and SIV infections. Our study suggests that in addition to their role in innate immunity against exogenous pathogens, nucleic acid-recognizing TLRs contribute to the immune control of activated ERVs and ERV-induced tumors.


Asunto(s)
Retrovirus Endógenos/genética , Ácidos Nucleicos/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Viremia/genética , Animales , Anticuerpos Antivirales/genética , Anticuerpos Antivirales/inmunología , Línea Celular , Retrovirus Endógenos/inmunología , Retrovirus Endógenos/metabolismo , Inmunidad Innata/genética , Inmunidad Innata/inmunología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ácidos Nucleicos/inmunología , Ácidos Nucleicos/metabolismo , Oncogenes/genética , Oncogenes/inmunología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/inmunología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Receptores Toll-Like/inmunología , Viremia/inmunología , Viremia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA