Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Brain ; 143(1): 359-373, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31782760

RESUMEN

Failure of Alzheimer's disease clinical trials to improve or stabilize cognition has led to the need for a better understanding of the driving forces behind cognitive decline in the presence of active disease processes. To dissect contributions of individual pathologies to cognitive function, we used the TgF344-AD rat model, which recapitulates the salient hallmarks of Alzheimer's disease pathology observed in patient populations (amyloid, tau inclusions, frank neuronal loss, and cognitive deficits). scyllo-Inositol treatment attenuated amyloid-ß peptide in disease-bearing TgF344-AD rats, which rescued pattern separation in the novel object recognition task and executive function in the reversal learning phase of the Barnes maze. Interestingly, neither activities of daily living in the burrowing task nor spatial memory in the Barnes maze were rescued by attenuating amyloid-ß peptide. To understand the pathological correlates leading to behavioural rescue, we examined the neuropathology and in vivo electrophysiological signature of the hippocampus. Amyloid-ß peptide attenuation reduced hippocampal tau pathology and rescued adult hippocampal neurogenesis and neuronal function, via improvements in cross-frequency coupling between theta and gamma bands. To investigate mechanisms underlying the persistence of spatial memory deficits, we next examined neuropathology in the entorhinal cortex, a region whose input to the hippocampus is required for spatial memory. Reduction of amyloid-ß peptide in the entorhinal cortex had no effect on entorhinal tau pathology or entorhinal-hippocampal neuronal network dysfunction, as measured by an impairment in hippocampal response to entorhinal stimulation. Thus, rescue or not of cognitive function is dependent on regional differences of amyloid-ß, tau and neuronal network dysfunction, demonstrating the importance of staging disease in patients prior to enrolment in clinical trials. These results further emphasize the need for combination therapeutic approaches across disease progression.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/efectos de los fármacos , Cognición/efectos de los fármacos , Corteza Entorrinal/efectos de los fármacos , Hipocampo/efectos de los fármacos , Inositol/farmacología , Memoria Espacial/efectos de los fármacos , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/psicología , Péptidos beta-Amiloides/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Corteza Entorrinal/metabolismo , Corteza Entorrinal/patología , Función Ejecutiva/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Aprendizaje por Laberinto , Vías Nerviosas , Ovillos Neurofibrilares/efectos de los fármacos , Ovillos Neurofibrilares/patología , Neurogénesis/efectos de los fármacos , Ratas , Ratas Transgénicas , Reconocimiento en Psicología/efectos de los fármacos , Aprendizaje Inverso/efectos de los fármacos
2.
Neuroimage ; 192: 135-144, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30669007

RESUMEN

The rapid growth in the use of optogenetics for neuroscience applications is largely driven by two important advantages: highly specific cellular targeting through genetic manipulations; and precise temporal control of neuronal activation via temporal modulation of the optical stimulation. The difference between the most commonly used stimulation modalities, namely diffused (i.e. synchronous) and focused (i.e. asynchronous) stimulation has not been described. Furthermore, full realization of optogenetics' potential is hindered by our incomplete understanding of the cellular and network level response to photoactivation. Here we address these gaps by examining the neuronal and cerebrovascular responses to focused and diffuse photostimulation of channelrhodopsin in the Thy1-ChR2 mouse. We presented the responses of photoactivation via 470-nm fiber optic illumination (diffuse) alongside 458-nm raster-scan (focused) stimulation of the barrel field. Local field potentials (LFP) assessment of intracerebral electrophysiology and two-photon fluorescence microscopy measurements of red blood cell (RBC) speed (vRBC) in cortical penetrating vessels revealed ∼40% larger LFP responses (p = 0.05) and twice as large cerebrovascular responses (p = 0.002) under focused vs. diffuse photostimulation (focused: 1.64 ±â€¯0.84 mV LFP amplitude and 75 ±â€¯48% increase in vRBC; diffuse: 1.14 ±â€¯0.75 mV LFP amplitude and 35 ±â€¯23% increase in vRBC). Compared to diffuse photostimulation, focused photostimulation resulted in a ∼65% increase in the yield of cerebrovascular responses (73 ±â€¯10% for focused and 42 ±â€¯29% for diffuse photostimulation) and a doubling of the signal-to-noise ratio of the cerebrovascular response (20.9 ±â€¯14.7 for focused and 10.4 ±â€¯1.4 for diffuse photostimulation). These data reveal important advantages of focused optogenetic photoactivation, which can be easily integrated into single- or two-photon fluorescence microscopy platforms, as a means of assessing neuronal excitability and cerebrovascular reactivity, thus paving the way for broader application of optogenetics in preclinical models of CNS diseases.


Asunto(s)
Encéfalo/irrigación sanguínea , Circulación Cerebrovascular/fisiología , Channelrhodopsins/metabolismo , Optogenética/métodos , Animales , Encéfalo/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
3.
J Neurosci ; 37(25): 6132-6148, 2017 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-28559377

RESUMEN

Hyperexcitable neuronal networks are mechanistically linked to the pathologic and clinical features of Alzheimer's disease (AD). Astrocytes are a primary defense against hyperexcitability, but their functional phenotype during AD is poorly understood. Here, we found that activated astrocytes in the 5xFAD mouse model were strongly associated with proteolysis of the protein phosphatase calcineurin (CN) and the elevated expression of the CN-dependent transcription factor nuclear factor of activated T cells 4 (NFAT4). Intrahippocampal injections of adeno-associated virus vectors containing the astrocyte-specific promoter Gfa2 and the NFAT inhibitory peptide VIVIT reduced signs of glutamate-mediated hyperexcitability in 5xFAD mice, measured in vivo with microelectrode arrays and ex vivo brain slices, using whole-cell voltage clamp. VIVIT treatment in 5xFAD mice led to increased expression of the astrocytic glutamate transporter GLT-1 and to attenuated changes in dendrite morphology, synaptic strength, and NMDAR-dependent responses. The results reveal astrocytic CN/NFAT4 as a key pathologic mechanism for driving glutamate dysregulation and neuronal hyperactivity during AD.SIGNIFICANCE STATEMENT Neuronal hyperexcitability and excitotoxicity are increasingly recognized as important mechanisms for neurodegeneration and dementia associated with Alzheimer's disease (AD). Astrocytes are profoundly activated during AD and may lose their capacity to regulate excitotoxic glutamate levels. Here, we show that a highly active calcineurin (CN) phosphatase fragment and its substrate transcription factor, nuclear factor of activated T cells (NFAT4), appear in astrocytes in direct proportion to the extent of astrocyte activation. The blockade of astrocytic CN/NFAT signaling in a common mouse model of AD, using adeno-associated virus vectors normalized glutamate signaling dynamics, increased astrocytic glutamate transporter levels and alleviated multiple signs of neuronal hyperexcitability. The results suggest that astrocyte activation drives hyperexcitability during AD through a mechanism involving aberrant CN/NFAT signaling and impaired glutamate transport.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/genética , Astrocitos , Calcineurina/genética , Factores de Transcripción NFATC/genética , Red Nerviosa/fisiopatología , Péptidos beta-Amiloides/metabolismo , Animales , Transportador 2 de Aminoácidos Excitadores/genética , Transportador 2 de Aminoácidos Excitadores/metabolismo , Potenciales Postsinápticos Excitadores , Silenciador del Gen , Hipocampo/metabolismo , Aprendizaje por Laberinto , Ratones , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/efectos de los fármacos
4.
Stroke ; 49(9): 2173-2181, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30354983

RESUMEN

Background and Purpose- Recent evidence suggests great potential of metabolically targeted interventions for treating neurological disorders. We investigated the use of the endogenous ketone body ß-hydroxybutyrate (BHB) as an alternate metabolic substrate for the brain in the acute phase of ischemia because postischemic hyperglycemia and brain glucose metabolism elevation compromise functional recovery. Methods- We delivered BHB (or vehicle) 1 hour after ischemic insult induced by cortical microinjection of endothelin-1 in sensorimotor cortex of rats. Two days after ischemic insult, the rats underwent multimodal characterization of the BHB effects. We examined glucose uptake on 2-Deoxy-d-glucose chemical exchange saturation transfer magnetic resonance imaging, cerebral hemodynamics on continuous arterial spin labeling magnetic resonance imaging, resting-state field potentials by intracerebral multielectrode arrays, Neurological Deficit Score, reactive oxygen species production, and astrogliosis and neuronal death. Results- When compared with vehicle-administered animals, BHB-treated cohort showed decreased peri-infarct neuronal glucose uptake which was associated with reduced oxidative stress, diminished astrogliosis and neuronal death. Functional examination revealed ameliorated neuronal functioning, normalized perilesional resting perfusion, and ameliorated cerebrovascular reactivity to hypercapnia, suggesting improved functioning. Cellular and functional recovery of the neurogliovascular unit in the BHB-treated animals was associated with improved performance on the withdrawal test. Conclusions- We characterize the effects of the ketone body BHB administration at cellular and system levels after focal cortical stroke. The results demonstrate that BHB curbs the peri-infarct glucose-metabolism driven production of reactive oxygen species and astrogliosis, culminating in improved neurogliovascular and functional recovery.


Asunto(s)
Ácido 3-Hidroxibutírico/farmacología , Astrocitos/efectos de los fármacos , Isquemia Encefálica/metabolismo , Encéfalo/efectos de los fármacos , Neuronas/efectos de los fármacos , Ácido 3-Hidroxibutírico/metabolismo , Acetoacetatos/metabolismo , Animales , Astrocitos/patología , Glucemia/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/patología , Isquemia Encefálica/diagnóstico por imagen , Isquemia Encefálica/patología , Muerte Celular/efectos de los fármacos , Circulación Cerebrovascular , Modelos Animales de Enfermedad , Fenómenos Electrofisiológicos , Endotelina-1 , Hemodinámica , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Microinyecciones , Neuronas/patología , Ratas , Especies Reactivas de Oxígeno/metabolismo , Corteza Sensoriomotora
5.
J Neurochem ; 144(5): 669-679, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28777881

RESUMEN

Alzheimer's disease (AD) is pathologically characterized by amyloid-ß peptide (Aß) accumulation, neurofibrillary tangle formation, and neurodegeneration. Preclinical studies on neuronal impairments associated with progressive amyloidosis have demonstrated some Aß-dependent neuronal dysfunction including modulation of gamma-aminobutyric acid-ergic signaling. The present work focuses on the early stage of disease progression and uses TgF344-AD rats that recapitulate a broad repertoire of AD-like pathologies to investigate the neuronal network functioning using simultaneous intracranial recordings from the hippocampus (HPC) and the medial prefrontal cortex (mPFC), followed by pathological analyses of gamma-aminobutyric acid (GABAA ) receptor subunits α1, α5, and δ, and glutamic acid decarboxylases (GAD65 and GAD67). Concomitant to amyloid deposition and tau hyperphosphorylation, low-gamma band power was strongly attenuated in the HPC and mPFC of TgF344-AD rats in comparison to those in non-transgenic littermates. In addition, the phase-amplitude coupling of the neuronal networks in both areas was impaired, evidenced by decreased modulation of theta band phase on gamma band amplitude in TgF344-AD animals. Finally, the gamma coherence between HPC and mPFC was attenuated as well. These results demonstrate significant neuronal network dysfunction at an early stage of AD-like pathology. This network dysfunction precedes the onset of cognitive deficits and is likely driven by Aß and tau pathologies. This article is part of the Special Issue "Vascular Dementia".


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Hipocampo/fisiopatología , Neuronas/fisiología , Corteza Prefrontal/fisiopatología , Enfermedad de Alzheimer/patología , Animales , Ondas Encefálicas , Modelos Animales de Enfermedad , Femenino , Glutamato Descarboxilasa/metabolismo , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Vías Nerviosas/fisiopatología , Placa Amiloide/metabolismo , Corteza Prefrontal/patología , Ratas Endogámicas F344 , Ratas Transgénicas , Receptores de GABA-A/metabolismo
6.
Biochim Biophys Acta ; 1832(3): 439-44, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23274884

RESUMEN

Alzheimer's disease (AD) is the most common age-related neurodegenerative disease, affecting an estimated 5.3million people in the United States. While many factors likely contribute to AD progression, it is widely accepted that AD is driven by the accumulation of ß-amyloid (Aß), a small, fibrillogenic peptide generated by the sequential proteolysis of the amyloid precursor protein by the ß- and γ-secretases. Though the underlying causes of Aß accumulation in sporadic AD are myriad, it is clear that lifestyle and overall health play a significant role. The adipocyte-derived hormone leptin has varied systemic affects, including neuropeptide release and neuroprotection. A recent study by Lieb et al. (2009) showed that individuals with low plasma leptin levels are at greater risk of developing AD, through unknown mechanisms. In this report, we show that plasma leptin is a strong negative predictor of Aß levels in the mouse brain, supporting a protective role for the hormone in AD onset. We also show that the inhibition of Aß accumulation is due to the downregulation of transcription of the γ-secretase components. On the other hand, ß-secretase expression is either unchanged (BACE1) or increased (BACE2). Finally, we show that only presenilin 1 (PS1) is negatively correlated with plasma leptin at the protein level (p<0.0001). These data are intriguing and may highlight a role for leptin in regulating the onset of amyloid pathology and AD.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Leptina/sangre , Secretasas de la Proteína Precursora del Amiloide/genética , Péptidos beta-Amiloides/biosíntesis , Animales , Encéfalo/efectos de los fármacos , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Expresión Génica/efectos de los fármacos , Humanos , Immunoblotting , Leptina/farmacología , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Presenilina-1/genética , Presenilina-1/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
7.
Biochim Biophys Acta ; 1832(9): 1456-62, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23313575

RESUMEN

Cerebral amyloid angiopathy (CAA) occurs in nearly every individual with Alzheimer's disease (AD) and Down's syndrome, and is the second largest cause of intracerebral hemorrhage. Mouse models of CAA have demonstrated evidence for increased gliosis contributing to CAA pathology. Nearly two thirds of Americans are overweight or obese, with little known about the effects of obesity on the brain, although increasingly the vasculature appears to be a principle target of obesity effects on the brain. In the current study we describe for the first time whether diet induced obesity (DIO) modulates glial reactivity, amyloid levels, and inflammatory signaling in a mouse model of CAA. In these studies we identify surprisingly that DIO does not significantly increase Aß levels, astrocyte (GFAP) or microglial (IBA-1) gliosis in the CAA mice. However, within the hippocampal gyri a localized increase in reactive microglia were increased in the CA1 and stratum oriens relative to CAA mice on a control diet. DIO was observed to selectively increase IL-6 in CAA mice, with IL-1ß and TNF-α not increased in CAA mice in response to DIO. Taken together, these data show that prolonged DIO has only modest effects towards Aß in a mouse model of CAA, but appears to elevate some localized microglial reactivity within the hippocampal gyri and selective markers of inflammatory signaling. These data are consistent with the majority of the existing literature in other models of Aß pathology, which surprisingly show a mixed profile of DIO effects towards pathological processes in mouse models of neurodegenerative disease. The importance for considering the potential impact of ceiling effects in pathology within mouse models of Aß pathogenesis, and the current experimental limitations for DIO in mice to fully replicate metabolic dysfunction present in human obesity, are discussed. This article is part of a Special Issue entitled: Animal Models of Disease.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Encéfalo/patología , Angiopatía Amiloide Cerebral/etiología , Dieta/efectos adversos , Modelos Animales de Enfermedad , Gliosis/etiología , Obesidad/etiología , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Animales , Western Blotting , Encéfalo/metabolismo , Angiopatía Amiloide Cerebral/patología , Femenino , Gliosis/patología , Humanos , Técnicas para Inmunoenzimas , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/patología , Obesidad/patología , Placa Amiloide/patología , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
8.
J Neurochem ; 128(2): 294-304, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24032632

RESUMEN

Studies of oxidative damage during the progression of Alzheimer's disease (AD) suggest its central role in disease pathogenesis. To investigate levels of nucleic acid oxidation in both early and late stages of AD, levels of multiple base adducts were quantified in nuclear and mitochondrial DNA from the superior and middle temporal gyri (SMTG), inferior parietal lobule (IPL), and cerebellum (CER) of age-matched normal control subjects, subjects with mild cognitive impairment, preclinical AD, late-stage AD, and non-AD neurological disorders (diseased control; DC) using gas chromatography/mass spectrometry. Median levels of multiple DNA adducts in nuclear and mitochondrial DNA were significantly (p ≤ 0.05) elevated in the SMTG, IPL, and CER in multiple stages of AD and in DC subjects. Elevated levels of fapyguanine and fapyadenine in mitochondrial DNA suggest a hypoxic environment early in the progression of AD and in DC subjects. Overall, these data suggest that oxidative damage is an early event not only in the pathogenesis of AD but is also present in neurodegenerative diseases in general. Levels of oxidized nucleic acids in nDNA and mtDNA were found to be significantly elevated in mild cognitive impairment (MCI), preclinical Alzheimer's disease (PCAD), late-stage AD (LAD), and a pooled diseased control group (DC) of frontotemporal dementia (FTD) and dementia with Lewy bodies (DLB) subjects compared to normal control (NC) subjects. Nucleic acid oxidation peaked early in disease progression and remained elevated. The study suggests nucleic acid oxidation is a general event in neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , ADN/metabolismo , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Núcleo Celular/genética , Núcleo Celular/metabolismo , Aductos de ADN/metabolismo , Daño del ADN , ADN Mitocondrial/metabolismo , Femenino , Demencia Frontotemporal/metabolismo , Humanos , Enfermedad por Cuerpos de Lewy/metabolismo , Masculino , Oxidación-Reducción
9.
J Alzheimers Dis ; 100(s1): S291-S304, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39121129

RESUMEN

Background: Exposure to lead (Pb) is a major public health problem that could occur through contaminated soil, air, food, or water, either during the course of everyday life, or while working in hazardous occupations. Although Pb has long been known as a neurodevelopmental toxicant in children, a recent and growing body of epidemiological research indicates that cumulative, low-level Pb exposure likely drives age-related neurologic dysfunction in adults. Environmental Pb exposure in adulthood has been linked to risk of late-onset Alzheimer's disease (AD) and dementia. Objective: Although the biological mechanism underlying this link is unknown, it has been proposed that Pb exposure may increase the risk of AD via altering the expression of AD-related genes and, possibly, by activating the molecular pathways underlying AD-related pathology. Methods: We investigated Pb exposure using a line of genetically modified mice with AD-causing knock-in mutations in the amyloid precursor protein and presenilin 1 (APPΔNL/ΔNL x PS1P264L/P264L) that had been crossed with Leprdb/db mice to impart vulnerability to vascular pathology. Results: Our data show that although Pb exposure in adult mice impairs cognitive function, this effect is not related to either an increase in amyloid pathology or to changes in the expression of common AD-related genes. Pb exposure also caused a significant increase in blood pressure, a well known effect of Pb. Interestingly, although the increase in blood pressure was unrelated to genotype, only mice that carried AD-related mutations developed cognitive dysfunction, in spite of showing no significant change in cerebrovascular pathology. Conclusions: These results raise the possibility that the increased risk of dementia associated with Pb exposure in adults may be tied to its subsequent interaction with either pre-existing or developing AD-related neuropathology.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Agua Potable , Plomo , Ratones Transgénicos , Presenilina-1 , Animales , Plomo/toxicidad , Plomo/sangre , Plomo/efectos adversos , Ratones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/inducido químicamente , Precursor de Proteína beta-Amiloide/genética , Presenilina-1/genética , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/genética , Masculino , Modelos Animales de Enfermedad , Femenino , Ratones Endogámicos C57BL
10.
J Neurosci ; 32(46): 16129-40, 2012 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-23152597

RESUMEN

Astrocytes are the most abundant cell type in the brain and play a critical role in maintaining healthy nervous tissue. In Alzheimer's disease (AD) and most other neurodegenerative disorders, many astrocytes convert to a chronically "activated" phenotype characterized by morphologic and biochemical changes that appear to compromise protective properties and/or promote harmful neuroinflammatory processes. Activated astrocytes emerge early in the course of AD and become increasingly prominent as clinical and pathological symptoms progress, but few studies have tested the potential of astrocyte-targeted therapeutics in an intact animal model of AD. Here, we used adeno-associated virus (AAV) vectors containing the astrocyte-specific Gfa2 promoter to target hippocampal astrocytes in APP/PS1 mice. AAV-Gfa2 vectors drove the expression of VIVIT, a peptide that interferes with the immune/inflammatory calcineurin/NFAT (nuclear factor of activated T-cells) signaling pathway, shown by our laboratory and others to orchestrate biochemical cascades leading to astrocyte activation. After several months of treatment with Gfa2-VIVIT, APP/PS1 mice exhibited improved cognitive and synaptic function, reduced glial activation, and lower amyloid levels. The results confirm a deleterious role for activated astrocytes in AD and lay the groundwork for exploration of other novel astrocyte-based therapies.


Asunto(s)
Enfermedad de Alzheimer/patología , Astrocitos/fisiología , Animales , Astrocitos/patología , Astrocitos/ultraestructura , Reacción de Prevención/fisiología , Western Blotting , Encéfalo/patología , Inhibidores de la Calcineurina , Células Cultivadas , Dependovirus/genética , Ensayo de Inmunoadsorción Enzimática , Potenciales Postsinápticos Excitadores/fisiología , Técnicas de Transferencia de Gen , Humanos , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Inflamación/fisiopatología , Potenciación a Largo Plazo/fisiología , Ratones , Ratones Transgénicos , Factores de Transcripción NFATC/antagonistas & inhibidores , Factores de Transcripción NFATC/fisiología , Neuronas/fisiología , Oligopéptidos/farmacología , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA