Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Appl Clin Med Phys ; 23(9): e13663, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35699201

RESUMEN

PURPOSE: This study aims to develop and validate a simple geometric model of the accelerator head, from which a particle phase space can be calculated for application to fast Monte Carlo dose calculation in real-time adaptive photon radiotherapy. With this objective in view, the study investigates whether the phase space model can facilitate dose calculations which are compatible with those of a commercial treatment planning system, for convenient interoperability. MATERIALS AND METHODS: A dual-source model of the head of a Versa HD accelerator (Elekta AB, Stockholm, Sweden) was created. The model used parameters chosen to be compatible with those of 6-MV flattened and 6-MV flattening filter-free photon beams in the RayStation treatment planning system (RaySearch Laboratories, Stockholm, Sweden). The phase space model was used to calculate a photon phase space for several treatment plans, and the resulting phase space was applied to the Dose Planning Method (DPM) Monte Carlo dose calculation algorithm. Simple fields and intensity-modulated radiation therapy (IMRT) treatment plans for prostate and lung were calculated for benchmarking purposes and compared with the convolution-superposition dose calculation within RayStation. RESULTS: For simple square fields in a water phantom, the calculated dose distribution agrees to within ±2% with that from the commercial treatment planning system, except in the buildup region, where the DPM code does not model the electron contamination. For IMRT plans of prostate and lung, agreements of ±2% and ±6%, respectively, are found, with slightly larger differences in the high dose gradients. CONCLUSIONS: The phase space model presented allows convenient calculation of a phase space for application to Monte Carlo dose calculation, with straightforward translation of beam parameters from the RayStation beam model. This provides a basis on which to develop dose calculation in a real-time adaptive setting.


Asunto(s)
Aceleradores de Partículas , Planificación de la Radioterapia Asistida por Computador , Algoritmos , Humanos , Masculino , Método de Montecarlo , Fantasmas de Imagen , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Simulación del Espacio , Agua , Flujo de Trabajo
2.
J Appl Clin Med Phys ; 20(1): 160-167, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30552738

RESUMEN

Current clinical practice is to prescribe to 95% of the planning target volume (PTV) in 4D stereotactic body radiotherapy (SBRT) for lung. Frequently the PTV margin has a very low physical density so that the internal target volume (ITV) receives an unnecessarily high dose. This study investigates the alternative of prescribing to the ITV while including the effects of positional uncertainties. Five patients were retrospectively studied with volumetric modulated arc therapy treatment plans. Five plans were produced for each patient: a static plan prescribed to PTV D95% , three probabilistic plans prescribed to ITV D95% and a static plan re-prescribed to ITV D95% after inverse planning. For the three probabilistic plans, the scatter kernel in the dose calculation was convolved with a spatial uncertainty distribution consisting of either a uniform distribution extending ±5 mm in the three orthogonal directions, a distribution consisting of delta functions at ±5 mm, or a Gaussian distribution with standard deviation 5 mm. Median ITV D50% is 23% higher than the prescribed dose for static planning and only 10% higher than the prescribed dose for prescription to the ITV. The choice of uncertainty distribution has less than 2% effect on the median ITV dose. Re-prescribing a static plan and evaluating with a probabilistic dose calculation results in a median ITV D95% which is 1.5% higher than when planning probabilistically. This study shows that a robust probabilistic approach to planning SBRT lung treatments results in the ITV receiving a dose closer to the intended prescription. The exact form of the uncertainty distribution is not found to be critical.


Asunto(s)
Algoritmos , Neoplasias Pulmonares/cirugía , Órganos en Riesgo/efectos de la radiación , Radiocirugia/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Humanos , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos , Estudios Retrospectivos , Incertidumbre
3.
J Appl Clin Med Phys ; 16(1): 5238, 2015 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-25679179

RESUMEN

For accurate delivery of volumetric-modulated arc therapy (VMAT), the gantry position should be synchronized with the multileaf collimator (MLC) leaf positions and the dose rate. This study, therefore, aims to implement quality control (QC) of VMAT synchronization, with as few arcs as possible and with minimal data handling time, using portal imaging. A steel bar of diameter 12 mm is accurately positioned in the G-T direction, 80 mm laterally from the isocenter. An arc prescription irradiates the bar with a 16 mm × 220 mm field during a complete 360° arc, so as to cast a shadow of the bar onto the portal imager. This results in a sinusoidal sweep of the field and shadow across the portal imager and back. The method is evaluated by simulating gantry position errors of 1°-9° at one control point, dose errors of 2 monitor units to 20 monitor units (MU) at one control point (0.3%-3% overall), and MLC leaf position errors of 1 mm - 6 mm at one control point. Inhomogeneity metrics are defined to characterize the synchronization of all leaves and of individual leaves with respect to the complete set. Typical behavior is also investigated for three models of accelerator. In the absence of simulated errors, the integrated images show uniformity, and with simulated delivery errors, irregular patterns appear. The inhomogeneity metrics increase by 67% due to a 4° gantry position error, 33% due to an 8 MU (1.25%) dose error, and 70% due to a 2 mm MLC leaf position error. The method is more sensitive to errors at gantry angle 90°/270° than at 0°/180° due to the geometry of the test. This method provides fast and effective VMAT QC suitable for inclusion in a monthly accelerator QC program. The test is able to detect errors in the delivery of individual control points, with the possibility of using movie images to further investigate suspicious image features.


Asunto(s)
Diagnóstico por Imagen , Neoplasias/radioterapia , Aceleradores de Partículas/normas , Garantía de la Calidad de Atención de Salud/métodos , Control de Calidad , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Humanos , Dosificación Radioterapéutica
4.
Phys Med Biol ; 69(3)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38198720

RESUMEN

Objective. A discrete ordinates Boltzmann solver has recently been developed for use as a fast and accurate dose engine for calculation of photon and proton beams. The purpose of this study is to apply the algorithm to the inverse planning process for photons and protons and to evaluate the impact that this has on the quality of the final solution.Approach.The method was implemented into an iterative least-squares inverse planning optimiser, with the Boltzmann solver used every 20 iterations over the total of 100 iterations. Elemental dose distributions for the intensity modulation and the dose changes at the intermediate iterations were calculated by a convolution algorithm for photons and a simple analytical model for protons. The method was evaluated for 12 patients in the heterogeneous tissue environment encountered in radiotherapy of lung tumours. Photon arc and proton arc treatments were considered in this study. The results were compared with those for use of the Boltzmann solver solely at the end of inverse planning or not at all.Main results.Application of the Boltzmann solver at the end of inverse planning shows the dose heterogeneity in the planning target volume to be greater than calculated by convolution and empirical methods, with the median root-mean-square dose deviation increasing from 3.7 to 5.3 for photons and from 1.9 to 3.4 for proton arcs. Use of discrete ordinates throughout inverse planning enables homogeneity of target coverage to be maintained throughout, the median root-mean-square dose deviation being 3.6 for photons and 2.3 for protons. Dose to critical structures is similar with discrete ordinates and conventional methods. Time for inverse planning with discrete ordinates takes around 1-2 h using a contemporary computing environment.Significance.By incorporating the Boltzmann solver into an iterative least squares inverse planning optimiser, accurate dose calculation in a heterogeneous medium is obtained throughout inverse planning, with the result that the final dose distribution is of the highest quality.


Asunto(s)
Terapia de Protones , Radioterapia de Intensidad Modulada , Humanos , Protones , Fotones/uso terapéutico , Pulmón , Planificación de la Radioterapia Asistida por Computador/métodos , Algoritmos , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos
5.
J Appl Clin Med Phys ; 14(2): 4136, 2013 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-23470941

RESUMEN

The Agility multileaf collimator (Elekta AB, Stockholm, Sweden) has 160 leaves of projected width 0.5 cm at the isocenter, with maximum leaf speed 3.5 cms-1. These characteristics promise to facilitate fast and accurate delivery of radiotherapy, particularly volumetric-modulated arc therapy (VMAT). The aim of this study is therefore to create a beam model for the Pinnacle3 treatment planning system (Philips Radiation Oncology Systems, Fitchburg, WI), and to use this beam model to explore the performance of the Agility MLC in delivery of VMAT. A 6 MV beam model was created and verified by measuring doses under irregularly shaped fields. VMAT treatment plans for five typical head-and-neck patients were created using the beam model and delivered using both binned and continuously variable dose rate (CVDR). Results were compared with those for an MLCi unit without CVDR. The beam model has similar parameters to those of an MLCi model, with interleaf leakage of only 0.2%. The verification of irregular fields shows a mean agreement between measured and planned dose of 1.3% (planned dose higher). The Agility VMAT head-and-neck plans show equivalent plan quality and delivery accuracy to those for an MLCi unit, with 95% of verification measurements within 3% and 3 mm of planned dose. Mean delivery time is 133 s with the Agility head and CVDR, 171 s without CVDR, and 282 s with an MLCi unit. Pinnacle3 has therefore been shown to model the Agility MLC accurately, and to provide accurate VMAT treatment plans which can be delivered significantly faster with Agility than with an MLCi.


Asunto(s)
Neoplasias de Cabeza y Cuello/radioterapia , Radiometría/instrumentación , Radiometría/métodos , Planificación de la Radioterapia Asistida por Computador/instrumentación , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/instrumentación , Radioterapia de Intensidad Modulada/métodos , Diseño de Equipo , Análisis de Falla de Equipo , Humanos , Dosificación Radioterapéutica , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
6.
Phys Med Biol ; 68(18)2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37643625

RESUMEN

The aim of this work is to develop a discrete ordinates Boltzmann solver that can be used for calculation of absorbed dose from both photons and protons within an inverse planning optimiser, so as to perform accurate dose calculation throughout the whole of the inverse planning process. With photons, five transport sweeps were performed to obtain scattered photon fluence, and unscattered electron fluence was then obtained and used as a fixed source for solution of the electron transport equations. With protons, continuous slowing down was treated as a fixed source, and five transport sweeps were used to calculate scattered fluence. The total electron or proton fluence was multiplied by the stopping power ratio for the transport medium to obtain absorbed dose. The method was evaluated in homogeneous media and in a lung case where the planning target volume was surrounded by low-density lung material. Photon arc, proton passive scattering and proton arc treatments were considered. The results were compared to a clinically validated convolution dose calculation for photons, and with an analytical method for protons. In water-equivalent media, the discrete ordinates method agrees with the alternative algorithms to within 2%. Convergence is found to be sufficiently complete for water-, lung- and bone-equivalent materials after five iterations. The dose calculated by the relatively simple angular quadrature is seen to be very close to that calculated by a more comprehensive quadrature. For inhomogeneous lung plans, the method shows more heterogeneity of dose to the planning target volume than the comparative methods. The discrete ordinates Boltzmann solver provides a general framework for dose calculation with both photons and protons. The method is suitable for incorporation into an inverse planning optimiser, so that accurate dose calculation in a heterogeneous medium can be obtained throughout inverse planning, with the result that the final dose distribution is as predicted by the optimiser.


Asunto(s)
Fotones , Protones , Algoritmos , Electrones , Agua
7.
Phys Imaging Radiat Oncol ; 28: 100518, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38077270

RESUMEN

Background and purpose: In external beam radiotherapy for non-small cell lung cancer, dose to functioning lung should be minimised to reduce lung morbidity. This study aimed to develop a method for avoiding beam delivery through functional lung and to quantify the possible benefit to the patients. Materials and methods: Twelve patients that were treated as part of a clinical trial of single photon emission computed tomography (SPECT) functional lung avoidance were retrospectively studied. During treatment planning, the dose in the lung was weighted by the relative intensity of the functional image. A single conformal beam was scanned systematically around the planning target volume to find optimum orientations and the resulting map of functional dose variation with gantry and couch angle was used to select five non-coplanar intensity-modulated beams, taking into account directions prohibited due to collision risk. Expected reduction in pneumonitis risk was calculated using a logistic model. Results: The volume of lung irradiated to a functionally weighted dose of 5 Gy was 11.8 % (range 3.5 %-22.0 %) for functional plans, versus 20.9 % (range 4.9 %-33.3 %) for conventional plans (p = 0.002). Mean functionally weighted dose was 4.1 Gy (range 1.3 Gy-7.2 Gy) for functional plans, versus 4.5 Gy (range 1.5 Gy-8.3 Gy) for conventional plans (p = 0.002). Predicted pneumonitis risk was reduced by 4.3 % (range 0.4 %-15.6 %) (p = 0.002). Conclusions: By seeking the optimum non-coplanar beam orientations, it is possible to reduce dose/volume lung parameters by 10% or more, consistently in all patients, regardless of the pattern of lung perfusion. A prediction model indicates that this will improve radiation-associated lung injury.

8.
Phys Imaging Radiat Oncol ; 22: 36-43, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35493850

RESUMEN

Background and purpose: Real-time portal dosimetry compares measured images with predicted images to detect delivery errors as the radiotherapy treatment proceeds. This work aimed to investigate the performance of a recurrent neural network for processing image metrics so as to detect delivery errors as early as possible in the treatment. Materials and methods: Volumetric modulated arc therapy (VMAT) plans of six prostate patients were used to generate sequences of predicted portal images. Errors were introduced into the treatment plans and the modified plans were delivered to a water-equivalent phantom. Four different metrics were used to detect errors. These metrics were applied to a threshold-based method to detect the errors as soon as possible during the delivery, and also to a recurrent neural network consisting of four layers. A leave-two-out approach was used to set thresholds and train the neural network then test the resulting systems. Results: When using a combination of metrics in conjunction with optimal thresholds, the median segment index at which the errors were detected was 107 out of 180. When using the neural network, the median segment index for error detection was 66 out of 180, with no false positives. The neural network reduced the rate of false negative results from 0.36 to 0.24. Conclusions: The recurrent neural network allowed the detection of errors around 30% earlier than when using conventional threshold techniques. By appropriate training of the network, false positive alerts could be prevented, thereby avoiding unnecessary disruption to the patient workflow.

9.
Br J Radiol ; 94(1120): 20201014, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33733813

RESUMEN

OBJECTIVES: In real-time portal dosimetry, thresholds are set for several measures of difference between predicted and measured images, and signals larger than those thresholds signify an error. The aim of this work is to investigate the use of an additional composite difference metric (CDM) for earlier detection of errors. METHODS: Portal images were predicted for the volumetric modulated arc therapy plans of six prostate patients. Errors in monitor units, aperture opening, aperture position and path length were deliberately introduced into all 180 segments of the treatment plans, and these plans were delivered to a water-equivalent phantom. Four different metrics, consisting of central axis signal, mean image value and two image difference measures, were used to identify errors, and a CDM was added, consisting of a weighted power sum of the individual metrics. To optimise the weights of the CDM and to evaluate the resulting timeliness of error detection, a leave-pair-out strategy was used. For each combination of four patients, the weights of the CDM were determined by an exhaustive search, and the result was evaluated on the remaining two patients. RESULTS: The median segment index at which the errors were identified was 87 (range 40-130) when using all of the individual metrics separately. Using a CDM as well as multiple separate metrics reduced this to 73 (35-95). The median weighting factors of the four metrics constituting the composite were (0.15, 0.10, 0.15, 0.00). Due to selection of suitable threshold levels, there was only one false positive result in the six patients. CONCLUSION: This study shows that, in conjunction with appropriate error thresholds, use of a CDM is able to identify increased image differences around 20% earlier than the separate measures. ADVANCES IN KNOWLEDGE: This study shows the value of combining difference metrics to allow earlier detection of errors during real-time portal dosimetry for volumetric modulated arc therapy treatment.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Radioterapia Guiada por Imagen/métodos , Radioterapia de Intensidad Modulada/métodos , Humanos , Masculino , Fantasmas de Imagen , Próstata/diagnóstico por imagen , Radiometría , Dosificación Radioterapéutica , Estudios Retrospectivos
10.
Med Phys ; 47(4): 1533-1544, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32048303

RESUMEN

PURPOSE: Several studies have demonstrated potential improvements in treatment time through the use of dynamic arcs for delivery of stereotactic body radiation therapy (SBRT) on Cyberknife. However, the delivery system has a finite accuracy, so that potential exists for dosimetric uncertainties. This study estimates the expected dosimetric accuracy of dynamic delivery of SBRT, based on realistic estimates of the uncertainties in delivery parameters. METHODS: Five SBRT patient cases (prostate A - conventional, prostate B - brachytherapy-type, lung, liver, partial left breast) were retrospectively studied. Treatment plans were produced for a fixed arc trajectory using fluence optimization, segmentation, and direct aperture optimization. Dose rate uncertainty was modeled as a smoothly varying random fluctuation of ± 1.0%, ±2.0% or ± 5.0% over a time period of 10, 30 or 60 s. Multileaf collimator uncertainty was modeled as a lag in position of each leaf up to 0.25 or 0.5 mm. Robot pointing error was modeled as a shift of the target location, with the direction of the shift chosen as a random angle with respect to the multileaf collimator and with a random magnitude in the range 0.0-1.0 mm at the delivery nodes and with an additional random magnitude of 0.5-1.0 mm in between the delivery nodes. The impact of the errors was investigated using dose-volume histograms. RESULTS: Uncertainty in dose rate has the effect of varying the total monitor units delivered, which in turn produces a variation in mean dose to the planning target volume. The random sampling of dose rate error produces a distribution of mean doses with a standard deviation proportional to the magnitude of the dose rate uncertainty. A lag in multileaf collimator position of 0.25 or 0.5 mm produces a small impact on the delivered dose. In general, an increase in the PTV mean dose of around 1% is observed. An error in robot pointing of the order of 1 mm produces a small increase in dose inhomogeneity to the planning target volume, sometimes accompanied by an increase in mean dose by around 1%. CONCLUSIONS: Based upon the limited data available on the dose rate stability and geometric accuracy of the Cyberknife system, this study estimates that dynamic arc delivery can be accomplished with sufficient accuracy for clinical application. Dose rate variation produces a change in dose to the planning target volume according to the perturbation of total monitor units delivered, while multileaf collimator lag and robot pointing error typically increase the mean dose to the planning target volume by up to 1%.


Asunto(s)
Radiocirugia/métodos , Radiometría , Dosificación Radioterapéutica , Incertidumbre
11.
Med Phys ; 36(11): 5128-38, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19994523

RESUMEN

PURPOSE: Volumetric modulated arc therapy (VMAT) is a specific type of intensity-modulated radiation therapy (IMRT) in which the gantry speed, multileaf collimator (MLC) leaf position, and dose rate vary continuously during delivery. A treatment planning system for VMAT is presented. METHODS: Arc control points are created uniformly throughout one or more arcs. An iterative least-squares algorithm is used to generate a fluence profile at every control point. The control points are then grouped and all of the control points in a given group are used to approximate the fluence profiles. A direct-aperture optimization is then used to improve the solution, taking into account the allowed range of leaf motion of the MLC. Dose is calculated using a fast convolution algorithm and the motion between control points is approximated by 100 interpolated dose calculation points. The method has been applied to five cases, consisting of lung, rectum, prostate and seminal vesicles, prostate and pelvic lymph nodes, and head and neck. The resulting plans have been compared with segmental (step-and-shoot) IMRT and delivered and verified on an Elekta Synergy to ensure practicality. RESULTS: For the lung, prostate and seminal vesicles, and rectum cases, VMAT provides a plan of similar quality to segmental IMRT but with faster delivery by up to a factor of 4. For the prostate and pelvic nodes and head-and-neck cases, the critical structure doses are reduced with VMAT, both of these cases having a longer delivery time than IMRT. The plans in general verify successfully, although the agreement between planned and measured doses is not very close for the more complex cases, particularly the head-and-neck case. CONCLUSIONS: Depending upon the emphasis in the treatment planning, VMAT provides treatment plans which are higher in quality and/or faster to deliver than IMRT. The scheme described has been successfully introduced into clinical use.


Asunto(s)
Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Algoritmos , Humanos , Análisis de los Mínimos Cuadrados , Masculino , Movimiento (Física) , Dosificación Radioterapéutica , Estudios Retrospectivos , Factores de Tiempo
13.
Phys Med Biol ; 54(9): N167-76, 2009 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-19384007

RESUMEN

The Delta(4) diode array phantom (Scandidos, Uppsala, Sweden) was evaluated for verification of segmental intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) on an Elekta linear accelerator (Crawley UK). The device was tested for angular sensitivity by irradiating it from 36 different gantry angles, and the responses of the device to various step-and-shoot segment doses and dose rates were evaluated using an ionization chamber as a comparison. The phantom was then compared with ionization chamber and film results for two prostate and pelvic nodes IMRT plans, two head and neck IMRT plans and two lung VMAT plans. These plans were calculated using Pinnacle(3) (Philips Radiation Oncology Systems, Madison, WI). The uniformity of angular response was better than 0.5% over the range of gantry angles. The uniformity of response of the Delta(4) to different segment monitor units and dose rates was better than 0.5%. The assessment of the IMRT and VMAT plans showed that the Delta(4) measured a dose within 2.5% of the ionization chamber, and compared to film recorded a slightly larger region (range -2% to +7%) agreeing with the planned dose to within 3% and 3 mm. The Delta(4) is a complex device and requires careful benchmarking, but following the successful completion of these measurements, the Delta(4) has been introduced into clinical use.


Asunto(s)
Fantasmas de Imagen , Radioterapia de Intensidad Modulada/instrumentación , Humanos , Modelos Lineales , Radiometría , Dosificación Radioterapéutica
14.
Phys Med Biol ; 64(2): 02TR01, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30524016

RESUMEN

Over the last decade, dose calculations which solve the linear Boltzmann transport equations have been introduced into clinical practice and are now in widespread use. However, knowledge in the radiotherapy community concerning the details of their function is limited. This review gives a general description of the linear Boltzmann transport equations as applied to calculation of absorbed dose in clinical radiotherapy. The aim is to elucidate the principles of the method, rather than to describe a particular implementation. The literature on the performance of typical algorithms is then reviewed, in many cases with reference to Monte Carlo simulations. The review is completed with an overview of the emerging applications in the important area of MR-guided radiotherapy.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética/métodos , Método de Montecarlo , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Guiada por Imagen/métodos , Humanos , Dosificación Radioterapéutica
15.
Phys Med Biol ; 64(20): 205009, 2019 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-31553964

RESUMEN

This study investigates the use of a running sum of images during segment-resolved intrafraction portal dosimetry for volumetric modulated arc therapy (VMAT), so as to alert the operator to an error before it becomes irremediable. At the time of treatment planning, predicted portal images were created for each segment of the VMAT arc, and at the time of delivery, intrafraction monitoring software polled the portal imager to read new images as they became available. The predicted and measured images were compared and displayed on a segment basis. In particular, a running sum of images from ten segments (a 'section') was investigated, with mean absolute difference between predicted and measured images being quantified. Images for 13 prostate patients were used to identify appropriate tolerance values for this statistic. Errors in monitor units of 2%-10%, field size of 2-10 mm, field position of 2-10 mm and path length of 10-50 mm were deliberately introduced into the treatment plans and delivered to a water-equivalent phantom and the sensitivity of the method to these errors was investigated. Gross errors were also considered for one case. The patient images show considerable variability from segment to segment, but when using a section of the arc the variability is reduced, so that the maximum value of mean absolute difference between predicted and measured images is reduced to below 12%, after excluding the first 10% of segments. This tolerance level is also found to be applicable for delivery of the plans to a water-equivalent phantom. Using this as a tolerance level for the error plans, a 10% increase in monitor units is detected, 4 mm increase or shift in multileaf collimator settings can be detected, and an air gap of dimensions 40 mm × 50 mm is detected. Gross errors can also be detected instantly after the first 10% of segments. The running difference between predicted and measured images over ten segments is able to identify errors at specific regions of the arc, as well as in the overall treatment.


Asunto(s)
Neoplasias de la Próstata/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Humanos , Masculino , Fantasmas de Imagen , Radiometría/métodos , Dosificación Radioterapéutica , Programas Informáticos
16.
Med Phys ; 46(12): 5421-5433, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31587322

RESUMEN

PURPOSE: The use of dynamic arcs for delivery of stereotactic body radiation therapy (SBRT) on Cyberknife is investigated, with a view to improving treatment times. This study investigates the required modeling of robot and multileaf collimator (MLC) motion between control points in the trajectory and then uses this to develop an optimization method for treatment planning of a dynamic arc with Cyberknife. The resulting plans are compared in terms of dose-volume histograms and estimated treatment times with those produced by a conventional beam arrangement. METHODS: Five SBRT patient cases (prostate A - conventional, prostate B - brachytherapy-type, lung, liver, and partial left breast) were retrospectively studied. A suitable arc trajectory with control points spaced at 5° was proposed and treatment plans were produced for typical clinical protocols. The optimization consisted of a fluence optimization, segmentation, and direct aperture optimization using a gradient descent method. Dose delivered by the moving MLC was either taken to be the dose delivered discretely at the control points or modeled using effective fluence delivered between control points. The accuracy of calculated dose was assessed by recalculating after optimization using five interpolated beams and 100 interpolated apertures between each optimization control point. The resulting plans were compared using dose-volume histograms and estimated treatment times with those for a conventional Cyberknife beam arrangement. RESULTS: If optimization is performed based on discrete doses delivered at the arc control points, large differences of up to 40% of the prescribed dose are seen when recalculating with interpolation. When the effective fluence between control points is taken into account during optimization, dosimetric differences are <2% for most structures when the plans are recalculated using intermediate nodes, but there are differences of up to 15% peripherally. Treatment plan quality is comparable between the arc trajectory and conventional body path. All plans meet the relevant clinical goals, with the exception of specific structures which overlap with the planning target volume. Median estimated treatment time is 355 s (range 235-672 s) for arc delivery and 675 s (range 554-1025 s) for conventional delivery. CONCLUSIONS: The method of using effective fluence to model MLC motion between control points is sufficiently accurate to provide for accurate inverse planning of dynamic arcs with Cyberknife. The proposed arcing method produces treatment plans with comparable quality to the body path, with reduced estimated treatment delivery time.


Asunto(s)
Modelos Biológicos , Movimiento , Radiocirugia , Planificación de la Radioterapia Asistida por Computador/métodos , Humanos , Neoplasias/fisiopatología , Neoplasias/radioterapia , Dosificación Radioterapéutica
17.
Med Eng Phys ; 64: 28-36, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30579786

RESUMEN

The Cyberknife system (Accuray Inc., Sunnyvale, CA) enables radiotherapy using stereotactic ablative body radiotherapy (SABR) with a large number of non-coplanar beam orientations. Recently, a multileaf collimator has also been available to allow flexibility in field shaping. This work aims to evaluate the quality of treatment plans obtainable with the multileaf collimator. Specifically, the aim is to find a subset of beam orientations from a predetermined set of candidate directions, such that the treatment quality is maintained but the treatment time is reduced. An evolutionary algorithm is used to successively refine a randomly selected starting set of beam orientations. By using an efficient computational framework, clinically useful solutions can be found in several hours. It is found that 15 beam orientations are able to provide treatment quality which approaches that of the candidate beam set of 110 beam orientations, but with approximately half of the estimated treatment time. Choice of an efficient subset of beam orientations offers the possibility to improve the patient experience and maximise the number of patients treated.


Asunto(s)
Radiocirugia/métodos , Humanos , Neoplasias/radioterapia , Control de Calidad , Radiocirugia/instrumentación , Planificación de la Radioterapia Asistida por Computador
18.
Br J Radiol ; 92(1097): 20180908, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30694086

RESUMEN

This paper gives an overview of recent developments in non-coplanar intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT). Modern linear accelerators are capable of automating motion around multiple axes, allowing efficient delivery of highly non-coplanar radiotherapy techniques. Novel techniques developed for C-arm and non-standard linac geometries, methods of optimization, and clinical applications are reviewed. The additional degrees of freedom are shown to increase the therapeutic ratio, either through dose escalation to the target or dose reduction to functionally important organs at risk, by multiple research groups. Although significant work is still needed to translate these new non-coplanar radiotherapy techniques into the clinic, clinical implementation should be prioritized. Recent developments in non-coplanar radiotherapy demonstrate that it continues to have a place in modern cancer treatment.


Asunto(s)
Neoplasias/radioterapia , Radioterapia Conformacional , Radioterapia de Intensidad Modulada , Humanos , Órganos en Riesgo , Aceleradores de Partículas , Radiocirugia , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Conformacional/métodos , Radioterapia de Intensidad Modulada/métodos
19.
Phys Med Biol ; 64(8): 08NT01, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30808011

RESUMEN

Radiotherapy treatment plans using dynamic couch rotation during volumetric modulated arc therapy (DCR-VMAT) reduce the dose to organs at risk (OARs) compared to coplanar VMAT, while maintaining the dose to the planning target volume (PTV). This paper seeks to validate this finding with measurements. DCR-VMAT treatment plans were produced for five patients with primary brain tumours and delivered using a commercial linear accelerator (linac). Dosimetric accuracy was assessed using point dose and radiochromic film measurements. Linac-recorded mechanical errors were assessed by extracting deviations from log files for multi-leaf collimator (MLC), couch, and gantry positions every 20 ms. Dose distributions, reconstructed from every fifth log file sample, were calculated and used to determine deviations from the treatment plans. Median (range) treatment delivery times were 125 s (123-133 s) for DCR-VMAT, compared to 78 s (64-130 s) for coplanar VMAT. Absolute point doses were 0.8% (0.6%-1.7%) higher than prediction. For coronal and sagittal films, respectively, 99.2% (96.7%-100%) and 98.1% (92.9%-99.0%) of pixels above a 20% low dose threshold reported gamma <1 for 3% and 3 mm criteria. Log file analysis showed similar gantry rotation root-mean-square error (RMSE) for VMAT and DCR-VMAT. Couch rotation RMSE for DCR-VMAT was 0.091° (0.086-0.102°). For delivered dose reconstructions, 100% of pixels above a 5% low dose threshold reported gamma <1 for 2% and 2 mm criteria in all cases. DCR-VMAT, for the primary brain tumour cases studied, can be delivered accurately using a commercial linac.


Asunto(s)
Neoplasias Encefálicas/radioterapia , Posicionamiento del Paciente/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Algoritmos , Humanos , Órganos en Riesgo , Aceleradores de Partículas , Posicionamiento del Paciente/normas , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/normas , Radioterapia de Intensidad Modulada/normas , Rotación
20.
Acta Oncol ; 47(7): 1438-43, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18654906

RESUMEN

BACKGROUND: Volumetric modulated arc therapy (VMAT) is a radiotherapy technique in which the gantry rotates while the beam is on. Gantry speed, multileaf collimator (MLC) leaf position and dose rate vary continuously during the irradiation. For optimum results, this type of treatment should be subject to image guidance. The application of VMAT and image guidance to the treatment of a lung cancer patient is described. MATERIAL AND METHODS: In-house software AutoBeam was developed to facilitate treatment planning for VMAT beams. The algorithm consisted of a fluence optimisation using the iterative least-squares technique, a segmentation and then a direct-aperture optimisation. A dose of 50 Gy in 25 fractions was planned, using a single arc with 35 control points at 10 degrees intervals. The resulting plan was transferred to a commercial treatment planning system for final calculation. The plan was verified using a 0.6 cm(3) ionisation chamber and film in a rectangular phantom. The patient was treated supine on a customised lung board and imaged daily with cone-beam CT for the first three days then weekly thereafter. RESULTS: The VMAT plan provided slightly improved coverage of the planning target volume (PTV) and slightly lower volume of lung irradiated to 20 Gy (V(20)) than a three-field conformal plan (PTV minimum dose 85.0 Gy vs. 81.8 Gy and lung V(20) 31.5% vs. 34.8%). The difference between the measured and planned dose was -1.1% (measured dose lower) and 97.6% of the film passed a gamma test of 3% and 3mm. The VMAT treatment required 90 s for delivery of a single fraction of 2 Gy instead of 180 s total treatment time for the conformal plan. CONCLUSION: VMAT provides a quality dose distribution with a short treatment time as shown in an example of a lung tumour. The technique should allow for more efficient delivery of high dose treatments, such as used for hypofractionated radiotherapy of small volume lung tumours, and the technique may also be used in conjunction with Active Breathing Control, where fewer breath holds will be required.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Neoplasias Pulmonares/radioterapia , Anciano , Algoritmos , Femenino , Humanos , Radioterapia Asistida por Computador , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA