Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(35): e2204400119, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35994662

RESUMEN

Ecological niche differences are necessary for stable species coexistence but are often difficult to discern. Models of dietary niche differentiation in large mammalian herbivores invoke the quality, quantity, and spatiotemporal distribution of plant tissues and growth forms but are agnostic toward food plant species identity. Empirical support for these models is variable, suggesting that additional mechanisms of resource partitioning may be important in sustaining large-herbivore diversity in African savannas. We used DNA metabarcoding to conduct a taxonomically explicit analysis of large-herbivore diets across southeastern Africa, analyzing ∼4,000 fecal samples of 30 species from 10 sites in seven countries over 6 y. We detected 893 food plant taxa from 124 families, but just two families-grasses and legumes-accounted for the majority of herbivore diets. Nonetheless, herbivore species almost invariably partitioned food plant taxa; diet composition differed significantly in 97% of pairwise comparisons between sympatric species, and dissimilarity was pronounced even between the strictest grazers (grass eaters), strictest browsers (nongrass eaters), and closest relatives at each site. Niche differentiation was weakest in an ecosystem recovering from catastrophic defaunation, indicating that food plant partitioning is driven by species interactions, and was stronger at low rainfall, as expected if interspecific competition is a predominant driver. Diets differed more between browsers than grazers, which predictably shaped community organization: Grazer-dominated trophic networks had higher nestedness and lower modularity. That dietary differentiation is structured along taxonomic lines complements prior work on how herbivores partition plant parts and patches and suggests that common mechanisms govern herbivore coexistence and community assembly in savannas.


Asunto(s)
Dieta , Pradera , Herbivoria , Mamíferos , Plantas , África , Animales , Conducta Competitiva , Código de Barras del ADN Taxonómico , Dieta/estadística & datos numéricos , Dieta/veterinaria , Fabaceae/clasificación , Fabaceae/genética , Heces , Mamíferos/clasificación , Mamíferos/fisiología , Plantas/clasificación , Plantas/genética , Poaceae/clasificación , Poaceae/genética , Lluvia
2.
Conserv Biol ; 27(4): 832-43, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23772986

RESUMEN

Sport hunting is often proposed as a tool to support the conservation of large carnivores. However, it is challenging to provide tangible economic benefits from this activity as an incentive for local people to conserve carnivores. We assessed economic gains from sport hunting and poaching of leopards (Panthera pardus), costs of leopard depredation of livestock, and attitudes of people toward leopards in Niassa National Reserve, Mozambique. We sent questionnaires to hunting concessionaires (n = 8) to investigate the economic value of and the relative importance of leopards relative to other key trophy-hunted species. We asked villagers (n = 158) the number of and prices for leopards poached in the reserve and the number of goats depredated by leopard. Leopards were the mainstay of the hunting industry; a single animal was worth approximately U.S.$24,000. Most safari revenues are retained at national and international levels, but poached leopard are illegally traded locally for small amounts ($83). Leopards depredated 11 goats over 2 years in 2 of 4 surveyed villages resulting in losses of $440 to 6 households. People in these households had negative attitudes toward leopards. Although leopard sport hunting generates larger gross revenues than poaching, illegal hunting provides higher economic benefits for households involved in the activity. Sport-hunting revenues did not compensate for the economic losses of livestock at the household level. On the basis of our results, we propose that poaching be reduced by increasing the costs of apprehension and that the economic benefits from leopard sport hunting be used to improve community livelihoods and provide incentives not to poach.


Asunto(s)
Crianza de Animales Domésticos/economía , Conservación de los Recursos Naturales/economía , Conservación de los Recursos Naturales/legislación & jurisprudencia , Conservación de los Recursos Naturales/métodos , Panthera/fisiología , Viaje/economía , Animales , Análisis Costo-Beneficio , Aplicación de la Ley/métodos , Mozambique , Encuestas y Cuestionarios
3.
Mol Ecol ; 21(6): 1379-93, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22320891

RESUMEN

Deciphering patterns of genetic variation within a species is essential for understanding population structure, local adaptation and differences in diversity between populations. Whilst neutrally evolving genetic markers can be used to elucidate demographic processes and genetic structure, they are not subject to selection and therefore are not informative about patterns of adaptive variation. As such, assessments of pertinent adaptive loci, such as the immunity genes of the major histocompatibility complex (MHC), are increasingly being incorporated into genetic studies. In this study, we combined neutral (microsatellite, mtDNA) and adaptive (MHC class II DLA-DRB1 locus) markers to elucidate the factors influencing patterns of genetic variation in the African wild dog (Lycaon pictus); an endangered canid that has suffered extensive declines in distribution and abundance. Our genetic analyses found all extant wild dog populations to be relatively small (N(e) < 30). Furthermore, through coalescent modelling, we detected a genetic signature of a recent and substantial demographic decline, which correlates with human expansion, but contrasts with findings in some other African mammals. We found strong structuring of wild dog populations, indicating the negative influence of extensive habitat fragmentation and loss of gene flow between habitat patches. Across populations, we found that the spatial and temporal structure of microsatellite diversity and MHC diversity were correlated and strongly influenced by demographic stability and population size, indicating the effects of genetic drift in these small populations. Despite this correlation, we detected signatures of selection at the MHC, implying that selection has not been completely overwhelmed by genetic drift.


Asunto(s)
Animales Salvajes/genética , Canidae/genética , Especies en Peligro de Extinción , Variación Genética , África , Animales , ADN Mitocondrial/genética , Frecuencia de los Genes , Flujo Genético , Genética de Población , Antígenos de Histocompatibilidad Clase II/genética , Repeticiones de Microsatélite , Datos de Secuencia Molecular , Selección Genética , Análisis de Secuencia de ADN
4.
Mol Phylogenet Evol ; 63(3): 745-57, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22410652

RESUMEN

We analyzed a concatenated (8492 bp) nuclear-mitochondrial DNA data set from 44 musteloids (including the first genetic data for Lyncodon patagonicus) with parsimony, maximum likelihood, and Bayesian methods of phylogenetic and biogeographic inference and two Bayesian methods of chronological inference. Here we show that Musteloidea emerged approximately 32.4-30.9 million years ago (MYA) in Asia, shortly after the greenhouse-icehouse global climate shift at the Eocene-Oligocene transition. During their Oligocene radiation, which proceeded wholly or mostly in Asia, musteloids diversified into four primary divisions: the Mephitidae lineage separated first, succeeded by Ailuridae and the divergence of the Procyonidae and Mustelidae lineages. Mustelidae arose approximately 16.1 MYA within the Mid-Miocene Climatic Optimum, and extensively diversified in the Miocene, mostly in Asia. The early offshoots of this radiation largely evolved into badger and marten ecological niches (Taxidiinae, Melinae, Mellivorinae, Guloninae, and Helictidinae), whereas the later divergences have adapted to other niches including those of weasels, polecats, minks, and otters (Mustelinae, Ictonychinae, and Lutrinae). Notably, and contrary to traditional beliefs, the morphological adaptations of badgers, martens, weasels, polecats, and minks each evolved independently more than once within Mustelidae. Ictonychinae (which is most closely related to Lutrinae) arose approximately 9.5-8.9 MYA, most likely in Asia, where it diverged into the Old World Ictonychini (Vormela, Poecilictis, Ictonyx, and Poecilogale) and New World Lyncodontini (Lyncodon and Galictis) lineages. Ictonychini presumably entered Africa during the Messinian Salinity Crisis (at the Miocene-Pliocene transition), which interposed the origins of this clade (approximately 6.5-6.0 MYA) and its African Poecilictis-Ictonyx-Poecilogale subclade (approximately 4.8-4.5 MYA). Lyncodontini originated approximately 2.9-2.6 MYA at the Pliocene-Pleistocene transition in South America, slightly after the emergence of the Panamanian land bridge that provided for the Great American Biotic Interchange. As the genera Martes and Ictonyx (as currently circumscribed) are paraphyletic with respect to the genera Gulo and Poecilogale, respectively, we propose that Pekaniaand Poecilictis be treated as valid genera and that "Martes"pennanti and "Ictonyx"libyca, respectively, be assigned to these genera.


Asunto(s)
Evolución Molecular , Mustelidae/genética , Filogenia , Animales , Teorema de Bayes , Fósiles , Especiación Genética , Funciones de Verosimilitud , Modelos Genéticos , Tipificación de Secuencias Multilocus , Filogeografía
5.
Conserv Lett ; 15(4): e12886, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36248252

RESUMEN

Human-wildlife cooperation occurs when humans and free-living wild animals actively coordinate their behavior to achieve a mutually beneficial outcome. These interactions provide important benefits to both the human and wildlife communities involved, have wider impacts on the local ecosystem, and represent a unique intersection of human and animal cultures. The remaining active forms are human-honeyguide and human-dolphin cooperation, but these are at risk of joining several inactive forms (including human-wolf and human-orca cooperation). Human-wildlife cooperation faces a unique set of conservation challenges, as it requires multiple components-a motivated human and wildlife partner, a suitable environment, and compatible interspecies knowledge-which face threats from ecological and cultural changes. To safeguard human-wildlife cooperation, we recommend: (i) establishing ethically sound conservation strategies together with the participating human communities; (ii) conserving opportunities for human and wildlife participation; (iii) protecting suitable environments; (iv) facilitating cultural transmission of traditional knowledge; (v) accessibly archiving Indigenous and scientific knowledge; and (vi) conducting long-term empirical studies to better understand these interactions and identify threats. Tailored safeguarding plans are therefore necessary to protect these diverse and irreplaceable interactions. Broadly, our review highlights that efforts to conserve biological and cultural diversity should carefully consider interactions between human and animal cultures. Please see AfricanHoneyguides.com/abstract-translations for Kiswahili and Portuguese translations of the abstract.

6.
Nat Ecol Evol ; 4(10): 1300-1310, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32728187

RESUMEN

The SARS-CoV-2 virus and COVID-19 illness are driving a global crisis. Governments have responded by restricting human movement, which has reduced economic activity. These changes may benefit biodiversity conservation in some ways, but in Africa, we contend that the net conservation impacts of COVID-19 will be strongly negative. Here, we describe how the crisis creates a perfect storm of reduced funding, restrictions on the operations of conservation agencies, and elevated human threats to nature. We identify the immediate steps necessary to address these challenges and support ongoing conservation efforts. We then highlight systemic flaws in contemporary conservation and identify opportunities to restructure for greater resilience. Finally, we emphasize the critical importance of conserving habitat and regulating unsafe wildlife trade practices to reduce the risk of future pandemics.


Asunto(s)
Animales Salvajes , Infecciones por Coronavirus , Pandemias , Neumonía Viral , África , Animales , Betacoronavirus , COVID-19 , Humanos , SARS-CoV-2
7.
BMC Biol ; 6: 10, 2008 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-18275614

RESUMEN

BACKGROUND: Adaptive radiation, the evolution of ecological and phenotypic diversity from a common ancestor, is a central concept in evolutionary biology and characterizes the evolutionary histories of many groups of organisms. One such group is the Mustelidae, the most species-rich family within the mammalian order Carnivora, encompassing 59 species classified into 22 genera. Extant mustelids display extensive ecomorphological diversity, with different lineages having evolved into an array of adaptive zones, from fossorial badgers to semi-aquatic otters. Mustelids are also widely distributed, with multiple genera found on different continents. As with other groups that have undergone adaptive radiation, resolving the phylogenetic history of mustelids presents a number of challenges because ecomorphological convergence may potentially confound morphologically based phylogenetic inferences, and because adaptive radiations often include one or more periods of rapid cladogenesis that require a large amount of data to resolve. RESULTS: We constructed a nearly complete generic-level phylogeny of the Mustelidae using a data matrix comprising 22 gene segments (approximately 12,000 base pairs) analyzed with maximum parsimony, maximum likelihood and Bayesian inference methods. We show that mustelids are consistently resolved with high nodal support into four major clades and three monotypic lineages. Using Bayesian dating techniques, we provide evidence that mustelids underwent two bursts of diversification that coincide with major paleoenvironmental and biotic changes that occurred during the Neogene and correspond with similar bursts of cladogenesis in other vertebrate groups. Biogeographical analyses indicate that most of the extant diversity of mustelids originated in Eurasia and mustelids have colonized Africa, North America and South America on multiple occasions. CONCLUSION: Combined with information from the fossil record, our phylogenetic and dating analyses suggest that mustelid diversification may have been spurred by a combination of faunal turnover events and diversification at lower trophic levels, ultimately caused by climatically driven environmental changes. Our biogeographic analyses show Eurasia as the center of origin of mustelid diversity and that mustelids in Africa, North America and South America have been assembled over time largely via dispersal, which has important implications for understanding the ecology of mustelid communities.


Asunto(s)
Variación Genética , Familia de Multigenes , Mustelidae/genética , Filogenia , Animales , Teorema de Bayes , Ecología , Especiación Genética , Funciones de Verosimilitud , Mustelidae/clasificación , Análisis de Secuencia de ADN
8.
Science ; 353(6297): 387-9, 2016 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-27463674

RESUMEN

Greater honeyguides (Indicator indicator) lead human honey-hunters to wild bees' nests, in a rare example of a mutualistic foraging partnership between humans and free-living wild animals. We show experimentally that a specialized vocal sound made by Mozambican honey-hunters seeking bees' nests elicits elevated cooperative behavior from honeyguides. The production of this sound increased the probability of being guided by a honeyguide from about 33 to 66% and the overall probability of thus finding a bees' nest from 17 to 54%, as compared with other animal or human sounds of similar amplitude. These results provide experimental evidence that a wild animal in a natural setting responds adaptively to a human signal of cooperation.


Asunto(s)
Aves/fisiología , Conducta Cooperativa , Miel , Simbiosis , Vocalización Animal , Animales , Abejas , Actividades Humanas , Humanos , Mozambique
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA