Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Eur J Nucl Med Mol Imaging ; 50(9): 2715-2726, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37140669

RESUMEN

PURPOSE: Immune checkpoint inhibitors (ICIs) are widely used in metastatic melanoma and dramatically alter the treatment of these patients. Given the high cost and potential toxicity, a reliable method for evaluating treatment response is needed. In this study, we assessed tumor response in patients with metastatic melanoma treated with ICIs using three modified response criteria: PET Response Evaluation Criteria for Immunotherapy (PERCIMT), PET Response Criteria in Solid Tumors for up to Five Lesions (PERCIST5), and immunotherapy-modified PET Response Criteria in Solid Tumors for up to Five Lesions (imPERCIST5). METHODS: Ninety-one patients with non-resectable stage IV metastatic melanoma who received ICIs were retrospectively enrolled in this study. Each patient had two [18F]FDG PET/CT scans performed before and after ICI therapy. Responses at the follow-up scan were evaluated according to PERCIMT, PERCIST5, and imPERCIST5 criteria. Patients were classified into four groups: complete metabolic response (CMR), partial metabolic response (PMR), progressive metabolic disease (PMD), and stable metabolic disease (SMD). To assess the "disease control rate," two groups have been defined based on each criterion: patients with CMR, PMR, and SMD as "disease-controlled group (i.e., responders)" and PMD as the "uncontrolled-disease group (i.e., non-responders)". The correspondence between metabolic tumor response defined by these criteria and clinical outcome was assessed and compared. RESULTS: The response and the disease control rates were 40.7% and 71.4%, 41.8% and 50.5%, and 54.9% and 74.7% based on the PERCIMT, PERCIST5, and imPERCIST5 criteria, respectively. PERCIMT and imPERCIST5 showed significantly different disease control rates from that of PERCIST5 (P < 0.001), whereas it was not significant between PERCIMT and imPERCIST5. Overall survival was significantly longer in the metabolic responder groups than in the non-responder groups based on PERCIMT and PERCIST5 criteria (PERCIMT: 2.48 versus 1.47 years, P = 0.003; PERCIST5: 2.57 versus 1.81 years. P = 0.017). However, according to imPERCIST5 criterion, this difference was not observed (P = 0.12). CONCLUSION: Although the appearance of new lesions can be secondary to an inflammatory response to ICIs and indicative of pseudoprogression, given the higher rate of true progression, the appearance of new lesions should be interpreted deliberately. Of the three assessed modified criteria, PERCIMT appear to provide more reliable metabolic response assessment that correlates strongly with overall patient survival.


Asunto(s)
Melanoma , Enfermedades Metabólicas , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Fluorodesoxiglucosa F18 , Ipilimumab/uso terapéutico , Estudios Retrospectivos , Radiofármacos/uso terapéutico , Melanoma/terapia , Melanoma/tratamiento farmacológico , Inmunoterapia , Enfermedades Metabólicas/tratamiento farmacológico
2.
Eur J Nucl Med Mol Imaging ; 50(5): 1466-1486, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36604326

RESUMEN

Here we aim to provide updated guidance and standards for the indication, acquisition, and interpretation of PSMA PET/CT for prostate cancer imaging. Procedures and characteristics are reported for a variety of available PSMA small radioligands. Different scenarios for the clinical use of PSMA-ligand PET/CT are discussed. This document provides clinicians and technicians with the best available evidence, to support the implementation of PSMA PET/CT imaging in research and routine practice.


Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones , Neoplasias de la Próstata , Masculino , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Radioisótopos de Galio , Oligopéptidos , Ácido Edético , Neoplasias de la Próstata/diagnóstico por imagen
3.
Eur Radiol ; 33(1): 472-482, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35864350

RESUMEN

OBJECTIVES: The bombesin derivative RM2 is a GRPr antagonist with strong binding affinity to prostate cancer (PCa). In this study, the impact of [68Ga]Ga-RM2 positron emission tomography-computed tomography (PET-CT) for the detection of primary PCa was compared with that of [18F]FCH PET-CT and multiparametric magnetic resonance imaging (mpMRI). METHODS: This phase I/II study was conducted in 30 biopsy-positive PCa subjects. The patients were stratified into high (10 patients), intermediate (10 patients), and low risk (10 patients) for extraglandular metastases as defined by National Comprehensive Cancer Network (NCCN) criteria (NCCN Clinical Practice Guidelines in Oncology, 2016). The prostate gland was classified in 12 anatomic segments for data analysis of the imaging modalities as well as histopathologic findings. The segment with the highest radiotracer uptake was defined as the "index lesion." All cases were scheduled to undergo prostatectomy with pelvic lymph node (LN) dissection in intermediate- and high-risk patients. Intraprostatic and pelvic nodal [68Ga]Ga-RM2 and [18F]FCH PET-CT findings were correlated with mpMRI and histopathologic results. RESULTS: Of the 312 analyzed regions, 120 regions (4 to 8 lesions per patient) showed abnormal findings in the prostate gland. In a region-based analysis, overall sensitivity and specificity of [68Ga]Ga-RM2 PET-CT in the detection of primary tumor were 74% and 90%, respectively, while it was 60% and 80% for [18F]FCH PET-CT and 72% and 89% for mpMRI. Although the overall sensitivity of [68Ga]Ga-RM2 PET-CT was higher compared to that of [18F]FCH PET-CT and mpMRI, the statistical analysis showed only significant difference between [68Ga]Ga-RM2 PET-CT and [18F]FCH PET-CT in the intermediate-risk group (p = 0.01) and [68Ga]Ga-RM2 PET-CT and mpMRT in the high-risk group (p = 0.03). In the lesion-based analysis, there was no significant difference between SUVmax of [68Ga]Ga-RM2 and [18F]FCH PET-CT in the intraprostatic malignant lesions ([68Ga]Ga-RM2: mean SUVmax: 5.98 ± 4.13, median: 4.75; [18F]FCH: mean SUVmax: 6.08 ± 2.74, median: 5.5; p = 0.13). CONCLUSIONS: [68Ga]Ga-RM2 showed promising PET tracer for the detection of intraprostatic PCa in a cohort of patients with different risk stratifications. However, significant differences were only found between [68Ga]Ga-RM2 PET-CT and [18F]FCH PET-CT in the intermediate-risk group and [68Ga]Ga-RM2 PET-CT and mpMRT in the high-risk group. In addition, GRP-R-based imaging seems to play a complementary role to choline-based imaging for full characterization of PCa extent and biopsy guidance in low- and intermediate-metastatic-risk PCa patients and has the potential to discriminate them from those at higher risks. KEY POINTS: • [68Ga]Ga-RM2 is a promising PET tracer with a high detection rate for intraprostatic PCa especially in intermediate-risk prostate cancer patients. • GRPr-based imaging seems to play a complementary role to choline-based or PSMA-based PET/CT imaging in selected low- and intermediate-risk PCa patients for better characterization and eventually biopsy guidance of prostate cancer disease.


Asunto(s)
Imágenes de Resonancia Magnética Multiparamétrica , Neoplasias de la Próstata , Masculino , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Radioisótopos de Galio , Bombesina , Colina , Neoplasias de la Próstata/patología
4.
Q J Nucl Med Mol Imaging ; 66(1): 15-30, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35005878

RESUMEN

Compared to positron emission tomography/computed tomography (PET/CT), the uptake of PET- magnetic resonance imaging (MRI) has been slow, even more so in clinical practice compared to the (pre-)clinical research setting. However, for applications in musculoskeletal (MSK) research, the combination of PET and MRI into a single modality offers attractive advantages over other imaging modalities. Most importantly, MRI has exquisite soft-tissue detail without the use of contrast agents or ionizing radiation, superior bone marrow visualization, and an extensive spectrum of distinct multiparametric assessment methods. In the preclinical setting, the introduction of PET inserts for small-animal MRI machines has proven to be a successful concept in bringing this technology to the lab. Initial hurdles in quantification have been mainly overcome in this setting. In parallel, a promising range of radiochemistry techniques has been developed to create multimodality probes that offer the possibility of simultaneously querying different metabolic pathways. Not only will these applications help in elucidating disease mechanisms, but they can also facilitate drug development. The clinical applications of PET/MRI in MSK are still limited, but encouraging initial results with novel radiotracers suggest a high potential for use in various MSK conditions, including osteoarthritis, rheumatoid arthritis, ankylosing spondylitis and inflammation and infection. Further innovations will be required to bring down the cost of PET/MRI to justify a broader clinical implementation, and remaining issues with quality control and standardization also need to be addressed. Nevertheless, PET/MRI is a powerful platform for MSK research with distinct qualities that are not offered by other techniques.


Asunto(s)
Enfermedades Musculoesqueléticas , Tomografía Computarizada por Tomografía de Emisión de Positrones , Animales , Humanos , Imagen por Resonancia Magnética/métodos , Imagen Multimodal/métodos , Enfermedades Musculoesqueléticas/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos
5.
Methods ; 188: 37-43, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32544594

RESUMEN

In the past decade, a new approach for quantitative analysis of medical images and prognostic modelling has emerged. Defined as the extraction and analysis of a large number of quantitative parameters from medical images, radiomics is an evolving field in precision medicine with the ultimate goal of the discovery of new imaging biomarkers for disease. Radiomics has already shown promising results in extracting diagnostic, prognostic, and molecular information latent in medical images. After acquisition of the medical images as part of the standard of care, a region of interest is defined often via a manual or semi-automatic approach. An algorithm then extracts and computes quantitative radiomics parameters from the region of interest. Whereas radiomics captures quantitative values of shape and texture based on predefined mathematical terms, neural networks have recently been used to directly learn and identify predictive features from medical images. Thereby, neural networks largely forego the need for so called "hand-engineered" features, which appears to result in significantly improved performance and reliability. Opportunities for radiomics and neural networks in pediatric nuclear medicine/radiology/molecular imaging are broad and can be thought of in three categories: automating well-defined administrative or clinical tasks, augmenting broader administrative or clinical tasks, and unlocking new methods of generating value. Specific applications include intelligent order sets, automated protocoling, improved image acquisition, computer aided triage and detection of abnormalities, next generation voice dictation systems, biomarker development, and therapy planning.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagen Molecular/métodos , Redes Neurales de la Computación , Pediatría/métodos , Niño , Conjuntos de Datos como Asunto , Humanos , Oncología Médica/tendencias , Planificación de Atención al Paciente , Pronóstico , Reproducibilidad de los Resultados , Telemedicina/métodos , Telemedicina/tendencias , Triaje/métodos
6.
Methods ; 188: 84-97, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32497604

RESUMEN

Lung cancer is the most common cancer, worldwide, and a major health issue with a remarkable mortality rate. 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography (2-[18F]FDG PET/CT) plays an indispensable role in the management of lung cancer patients. Long-established quantitative parameters such as size, density, and metabolic activity have been and are being employed in the current practice to enhance interpretation and improve diagnostic and prognostic value. The introduction of radiomics analysis revolutionized the quantitative evaluation of medical imaging, revealing data within images beyond visual interpretation. The "big data" are extracted from high-quality images and are converted into information that correlates to relevant genetic, pathologic, clinical, or prognostic features. Technically advanced, diverse methods have been implemented in different studies. The standardization of image acquisition, segmentation and features analysis is still a debated issue. Importantly, a body of features has been extracted and employed for diagnosis, staging, risk stratification, prognostication, and therapeutic response. 2-[18F]FDG PET/CT-derived features show promising value in non-invasively diagnosing the malignant nature of pulmonary nodules, differentiating lung cancer subtypes, and predicting response to different therapies as well as survival. In this review article, we aimed to provide an overview of the technical aspects used in radiomics analysis in non-small cell lung cancer (NSCLC) and elucidate the role of 2-[18F]FDG PET/CT-derived radiomics in the diagnosis, prognostication, and therapeutic response.


Asunto(s)
Interpretación de Imagen Asistida por Computador/normas , Neoplasias Pulmonares/diagnóstico , Pulmón/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones/normas , Radiología/normas , Fluorodesoxiglucosa F18/administración & dosificación , Humanos , Pulmón/patología , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/terapia , Metástasis Linfática/diagnóstico , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Guías de Práctica Clínica como Asunto , Pronóstico , Supervivencia sin Progresión , Radiología/métodos , Radiofármacos/administración & dosificación , Medición de Riesgo/métodos , Medición de Riesgo/normas
7.
Eur J Nucl Med Mol Imaging ; 48(12): 4028-4041, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33677734

RESUMEN

BACKGROUND: Prostate cancer (PC) is one of the most common cancers in men. Although the overall prognosis is favorable, the management of metastatic castration-resistant prostate cancer (mCRPC) patients is challenging. Usually, mCRPC patients with progressive disease are considered for radioligand therapy (RLT) after exhaustion of other standard treatments. The prostate-specific membrane antigen (PSMA) labeled with Lutetium-177 ([177Lu]Lu-PSMA) has been widely used, showing favorable and successful results in reducing prostate-specific antigen (PSA) levels, increasing quality of life, and decreasing pain, in a multitude of studies. Nevertheless, approximately thirty percent of patients do not respond to [177Lu]Lu-PSMA RLT. Here, we only reviewed and reported the evaluated factors and their impact on survival or biochemical response to treatment to have an overview of the potentialprognostic parameters in [177Lu]Lu-PSMA RLT. METHODS: Studies were retrieved by searching MEDLINE/PubMed and GoogleScholar. The search keywords were as follows: {("177Lu-PSMA") AND ("radioligand") AND ("prognosis") OR ("predict")}. Studies discussing one or more factors which may be prognostic or predictive of response to [177Lu]Lu-PSMA RLT, that is PSA response and survival parameters, were included. RESULTS: Several demographic, histological, biochemical, and imaging factors have been assessed as predictive parameters for the response to thistreatment; however, the evaluated factors were diverse, and the results mostly were divergent, except for the PSA level reduction after treatment, which unanimously predicted prolonged survival. CONCLUSION: Several studies have investigated a multitude of factors to detect those predicting response to [177Lu]Lu-PSMA RLT. The results wereinconsistent regarding some factors, and some were evaluated in only a few studies. Future prospective randomized trials are required to detect theindependent prognostic factors, and to further determine the clinical and survival benefits of [177Lu]Lu-PSMA RLT.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Calidad de Vida , Dipéptidos , Compuestos Heterocíclicos con 1 Anillo , Humanos , Masculino , Pronóstico , Neoplasias de la Próstata Resistentes a la Castración/radioterapia , Resultado del Tratamiento
8.
Eur J Nucl Med Mol Imaging ; 48(5): 1371-1389, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33179151

RESUMEN

PURPOSE: The aim of the present paper is to review the role of HER2 antibodies, affibodies and nanobodies as vehicles for imaging and therapy approaches in breast cancer, including a detailed look at recent clinical data from antibody drug conjugates and nanobodies as well as affibodies that are currently under development. RESULTS: Clinical and preclinical studies have shown that the use of monoclonal antibodies in molecular imaging is impaired by slow blood clearance, associated with slow and low tumor uptake and with limited tumor penetration potential. Antibody fragments, such as nanobodies, on the other hand, can be radiolabelled with short-lived radioisotopes and provide high-contrast images within a few hours after injection, allowing early diagnosis and reduced radiation exposure of patients. Even in therapy, the small radioactively labeled nanobodies prove to be superior to radioactively labeled monoclonal antibodies due to their higher specificity and their ability to penetrate the tumor. CONCLUSION: While monoclonal antibodies are well established drug delivery vehicles, the current literature on molecular imaging supports the notion that antibody fragments, such as affibodies or nanobodies, might be superior in this approach.


Asunto(s)
Neoplasias de la Mama , Preparaciones Farmacéuticas , Anticuerpos de Dominio Único , Neoplasias de la Mama/diagnóstico por imagen , Humanos , Radioinmunodetección , Radioinmunoterapia , Receptor ErbB-2
10.
Q J Nucl Med Mol Imaging ; 63(1): 29-36, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30644306

RESUMEN

Defining an optimal therapeutic approach in metastatic castration-resistance prostate cancer (mCRPC) patients in advanced stages is still challenging in routine clinical practice. Prostate-specific membrane antigen (PSMA) targeted radionuclide therapy with ß- or α-emitters such as 177-Lutethium (177Lu) or 225-Actinium (225A) has been a main focus at multiple academic research centers in the last few years. This review article provides an overview of PSMA characteristics, clinical performance, safety and toxicity of PSMA targeted ß- or α-radiation therapy.


Asunto(s)
Antígenos de Superficie/metabolismo , Glutamato Carboxipeptidasa II/metabolismo , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/radioterapia , Partículas beta/uso terapéutico , Humanos , Ligandos , Masculino , Neoplasias de la Próstata/diagnóstico , Seguridad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA