Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neuroeng Rehabil ; 12: 26, 2015 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-25889389

RESUMEN

BACKGROUND: To propel in an energy-efficient manner, handrim wheelchair users must learn to control the bimanually applied forces onto the rims, preserving both speed and direction of locomotion. Previous studies have found an increase in mechanical efficiency due to motor learning associated with changes in propulsion technique, but it is unclear in what way the propulsion technique impacts the load on the shoulder complex. The purpose of this study was to evaluate mechanical efficiency, propulsion technique and load on the shoulder complex during the initial stage of motor learning. METHODS: 15 naive able-bodied participants received 12-minutes uninstructed wheelchair practice on a motor driven treadmill, consisting of three 4-minute blocks separated by two minutes rest. Practice was performed at a fixed belt speed (v = 1.1 m/s) and constant low-intensity power output (0.2 W/kg). Energy consumption, kinematics and kinetics of propulsion technique were continuously measured. The Delft Shoulder Model was used to calculate net joint moments, muscle activity and glenohumeral reaction force. RESULTS: With practice mechanical efficiency increased and propulsion technique changed, reflected by a reduced push frequency and increased work per push, performed over a larger contact angle, with more tangentially applied force and reduced power losses before and after each push. Contrary to our expectations, the above mentioned propulsion technique changes were found together with an increased load on the shoulder complex reflected by higher net moments, a higher total muscle power and higher peak and mean glenohumeral reaction forces. CONCLUSIONS: It appears that the early stages of motor learning in handrim wheelchair propulsion are indeed associated with improved technique and efficiency due to optimization of the kinematics and dynamics of the upper extremity. This process goes at the cost of an increased muscular effort and mechanical loading of the shoulder complex. This seems to be associated with an unchanged stable function of the trunk and could be due to the early learning phase where participants still have to learn to effectively use the full movement amplitude available within the wheelchair-user combination. Apparently whole body energy efficiency has priority over mechanical loading in the early stages of learning to propel a handrim wheelchair.


Asunto(s)
Aprendizaje/fisiología , Hombro/fisiología , Extremidad Superior/fisiología , Silla de Ruedas , Adulto , Fenómenos Biomecánicos , Metabolismo Energético/fisiología , Femenino , Humanos , Húmero/fisiología , Individualidad , Masculino , Músculo Esquelético/fisiología , Práctica Psicológica , Adulto Joven
2.
Clin Biomech (Bristol, Avon) ; 54: 54-61, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29554550

RESUMEN

BACKGROUND: Altered scapular kinematics have been associated with shoulder pain and functional limitations. To understand kinematics in persons with spinal cord injury during manual handrim wheelchair propulsion, a description of normal scapular behaviour in able-bodied persons during this specific task is a prerequisite for accurate interpretation. The primary aim of this study is to describe scapular kinematics in able-bodied persons during manual wheelchair propulsion. METHODS: Sixteen able-bodied, novice wheelchair users without shoulder complaints participated in the study. Kinematic and kinetic data were collected during a standardized pose in the anatomic posture, frontal-plane arm elevation and low-intensity steady-state handrim wheelchair propulsion and upper-body Euler angles were calculated. FINDINGS: Scapulothoracic joint orientations in a static position were 36.7° (SD 5.4°), 6.4° (SD 9.1°) and 9.1° (SD 5.7°) for respectively protraction, lateral rotation and anterior tilt. At 80° of arm elevation in the frontal plane, the respective values of 33.4° (SD 8.0°), 23.9° (SD 5.4°) and 4.1° (SD 11.3°) were found. During the push phase of manual wheelchair propulsion, the mean scapular rotations were respectively 32.7° (SD 7.1°), 7.1° (SD 9.2°) and 9.8° (SD 8.3°). INTERPRETATION: The orientation of the scapula in a static pose, during arm elevation and in manual wheelchair propulsion in able-bodied participants showed similar patterns to a previous study in persons with para- and tetraplegia. These values provide a reference for the investigation of the scapular movement pattern in wheelchair-dependent persons and its relation to shoulder complex abnormalities.


Asunto(s)
Rango del Movimiento Articular/fisiología , Escápula/fisiología , Articulación del Hombro/fisiología , Silla de Ruedas , Adulto , Brazo/fisiopatología , Fenómenos Biomecánicos , Femenino , Humanos , Masculino , Hombro/fisiología , Síndrome de Abducción Dolorosa del Hombro/fisiopatología , Dolor de Hombro/fisiopatología , Traumatismos de la Médula Espinal/fisiopatología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA