Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 113(9): 096601, 2014 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-25215999

RESUMEN

We report on the observation of photogalvanic effects in epitaxially grown Sb2Te3 and Bi2Te3 three-dimensional (3D) topological insulators (TI). We show that asymmetric scattering of Dirac fermions driven back and forth by the terahertz electric field results in a dc electric current. Because of the "symmetry filtration" the dc current is generated by the surface electrons only and provides an optoelectronic access to probe the electron transport in TI, surface domains orientation, and details of electron scattering in 3D TI even at room temperature.

2.
Nature ; 397(6718): 398, 1999 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-29667986

RESUMEN

In semiconductors, nonlinear generation and recombination processes of free carriers and nonlinear charge transport can give rise to non-equilibrium phase transitions, . At low temperatures, the basic nonlinearity is due to the autocatalytic generation of free carriers by impact ionization of shallow impurities. The electric field accelerates free electrons, causing an abrupt increase in free carrier density at a critical electric field. In static electric fields, this nonlinearity is known to yield complex filamentary current patterns bound to electric contacts.

3.
J Infrared Millim Terahertz Waves ; 41(10): 1155-1169, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-34721704

RESUMEN

We report on the observation of terahertz (THz) radiation induced band-to-band impact ionization in HgTe quantum well (QW) structures of critical thickness, which are characterized by a nearly linear energy dispersion. The THz electric field drives the carriers initializing electron-hole pair generation. The carrier multiplication is observed for photon energies less than the energy gap under the condition that the product of the radiation angular frequency ω and momentum relaxation time τ l larger than unity. In this case, the charge carriers acquire high energies solely because of collisions in the presence of a high-frequency electric field. The developed microscopic theory shows that the probability of the light-induced impact ionization is proportional to exp ( - E 0 2 / E 2 ) , with the radiation electric field amplitude E and the characteristic field parameter E 0. As observed in experiment, it exhibits a strong frequency dependence for ω τ ≫ 1 characterized by the characteristic field E 0 linearly increasing with the radiation frequency ω.

4.
Phys Rev Lett ; 102(15): 156602, 2009 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-19518662

RESUMEN

We study zero-bias spin separation in (Cd,Mn)Te/(Cd,Mg)Te diluted magnetic semiconductor structures. The spin current generated by electron gas heating under terahertz radiation is converted into a net electric current by applying an external magnetic field. The experiments show that the spin polarization of the magnetic ion system enhances drastically the conversion process due to giant Zeeman splitting of the conduction band and spin-dependent electron scattering on localized Mn(2+) ions.

5.
Phys Rev Lett ; 100(17): 176806, 2008 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-18518322

RESUMEN

Symmetry and spin dephasing in (110)-grown GaAs quantum wells (QWs) are investigated applying magnetic field induced photogalvanic effect and time-resolved Kerr rotation. We show that magnetic field induced photogalvanic effect provides a tool to probe the symmetry of (110)-grown quantum wells. The photocurrent is only observed for asymmetric structures but vanishes for symmetric QWs. Applying Kerr rotation we prove that in the latter case the spin relaxation time is maximal; therefore, these structures set the upper limit of spin dephasing in GaAs QWs. We also demonstrate that structure inversion asymmetry can be controllably tuned to zero by variation of delta-doping layer positions.

6.
Nature ; 417(6885): 153-6, 2002 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-12000954

RESUMEN

There is much recent interest in exploiting the spin of conduction electrons in semiconductor heterostructures together with their charge to realize new device concepts. Electrical currents are usually generated by electric or magnetic fields, or by gradients of, for example, carrier concentration or temperature. The electron spin in a spin-polarized electron gas can, in principle, also drive an electrical current, even at room temperature, if some general symmetry requirements are met. Here we demonstrate such a 'spin-galvanic' effect in semiconductor heterostructures, induced by a non-equilibrium, but uniform population of electron spins. The microscopic origin for this effect is that the two electronic sub-bands for spin-up and spin-down electrons are shifted in momentum space and, although the electron distribution in each sub-band is symmetric, there is an inherent asymmetry in the spin-flip scattering events between the two sub-bands. The resulting current flow has been detected by applying a magnetic field to rotate an optically oriented non-equilibrium spin polarization in the direction of the sample plane. In contrast to previous experiments, where spin-polarized currents were driven by electric fields in semiconductor, we have here the complementary situation where electron spins drive a current without the need of an external electric field.

7.
Phys Rev Lett ; 88(5): 057401, 2002 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-11863775

RESUMEN

Spin-sensitive bleaching of the absorption of far-infrared radiation has been observed in p-type GaAs/AlGaAs quantum well structures. The absorption of circularly polarized radiation saturates at lower intensities than that of linearly polarized light due to monopolar spin orientation in the first heavy-hole subband. Spin relaxation times of holes in p-type material in the range of tens of ps were derived from the intensity dependence of the absorption.

8.
Phys Rev Lett ; 92(25 Pt 1): 256601, 2004 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-15245041

RESUMEN

The relative strengths of Rashba and Dresselhaus terms describing the spin-orbit coupling in semiconductor quantum well (QW) structures are extracted from photocurrent measurements on n-type InAs QWs containing a two-dimensional electron gas (2DEG). This novel technique makes use of the angular distribution of the spin-galvanic effect at certain directions of spin orientation in the plane of a QW. The ratio of the relevant Rashba and Dresselhaus coefficients can be deduced directly from experiment and does not relay on theoretically obtained quantities. Thus our experiments open a new way to determine the different contributions to spin-orbit coupling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA