Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Fish Shellfish Immunol ; 150: 109565, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38636740

RESUMEN

The jawless vertebrates (agnathans/cyclostomes) are ancestral animals comprising lampreys and hagfishes as the only extant representatives. They possess an alternative adaptive immune system (AIS) that uses leucine-rich repeats (LRR)-based variable lymphocyte receptors (VLRs) instead of the immunoglobulin (Ig)-based antigen receptors of jawed vertebrates (gnathostomes). The different VLR types are expressed on agnathan lymphocytes and functionally resemble gnathostome antigen receptors. In particular, VLRB is functionally similar to the B cell receptor and is expressed and secreted by B-like lymphocytes as VLRB antibodies that bind antigens with high affinity and specificity. The potential repertoire scale of VLR-based antigen receptors is believed to be at least comparable to that of Ig-based systems. VLR proteins inherently possess characteristics that render them excellent candidates for biotechnological development, including tractability to recombinant approaches. In recent years, scientists have explored the biotechnological development and utility of VLRB proteins as alternatives to conventional mammalian antibodies. The VLRB antibody platform represents a non-traditional approach to generating a highly diverse repertoire of unique antibodies. In this review, we first describe some aspects of the biology of the AIS of the jawless vertebrates, which recognizes antigens by means of unique receptors. We then summarize reports on the development of VLRB-based antibodies and their applications, particularly those from the inshore hagfish (Eptatretus burgeri) and their potential uses to address microbial diseases in aquaculture. Hagfish VLRB antibodies (we call Ccombodies) are being developed and improved, while obstacles to the advancement of the VLRB platform are being addressed to utilize VLRBs effectively as tools in immunology. VLRB antibodies for novel antigen targets are expected to emerge to provide new opportunities to tackle various scientific questions. We anticipate a greater interest in the agnathan AIS in general and particularly in the hagfish AIS for greater elucidation of the evolution of adaptive immunity and its applications to address microbial pathogens in farmed aquatic animals and beyond.


Asunto(s)
Enfermedades de los Peces , Anguila Babosa , Animales , Anguila Babosa/inmunología , Anguila Babosa/genética , Enfermedades de los Peces/inmunología , Inmunidad Adaptativa , Receptores de Antígenos/genética , Receptores de Antígenos/inmunología , Proteínas de Peces/inmunología , Proteínas de Peces/genética
2.
Microbiol Res ; 257: 126973, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35085841

RESUMEN

With recent initiatives to ban bisphenol A (BPA) in certain commercial products, manufacturers shifted to the production and use of BPA analogues. However, some of these BPA alternatives still possess endocrine disruptive activities. Many fungal enzymes are known to biodegrade phenolic compounds, such as BPA. However, the activity of these enzymes on BPA analogues remains unexplored. This study reports a secreted laccase from the endophytic fungus Diaporthe longicolla capable of degrading an impressive range of bisphenol analogues. The secreted crude enzymes are optimally active at pH 5 from 39 °C to 60 °C, efficiently degrading BPA as well as BPA analogues BPB, BPC, BPE and BPF. A purified form of laccase was identified from the crude fungal extract using FPLC and peptide sequencing. Furthermore, BPA induced the expression of this D. longicolla laccase gene. Overall, this paper demonstrated that the crude laccase enzyme from D. longicolla metabolizes BPA and select analogues, implicating the potential role of this fungus to remove environmental bisphenols.


Asunto(s)
Compuestos de Bencidrilo , Lacasa , Ascomicetos , Lacasa/genética , Fenoles , Phomopsis
3.
PLoS One ; 6(12): e29430, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22216280

RESUMEN

BACKGROUND: Dengue virus is transmitted by mosquitoes and has four serotypes. Cross-protection to other serotypes lasting for a few months is observed following infection with one serotype. There is evidence that low-affinity T and/or B cells from primary infections contribute to the severe syndromes often associated with secondary dengue infections. such pronounced immune-mediated enhancement suggests a dengue-specific pattern of immune cell activation. This study investigates the acute and early convalescent B cell response leading to the generation of cross-reactive and neutralizing antibodies following dengue infection. METHODOLOGY/PRINCIPAL FINDINGS: We assayed blood samples taken from dengue patients with primary or secondary infection during acute disease and convalescence and compared them to samples from patients presenting with non-dengue related fever. Dengue induced massive early plasmablast formation, which correlated with the appearance of polyclonal, cross-reactive IgG for both primary and secondary infection. Surprisingly, the contribution of IgG to the neutralizing titer 4-7 days after fever onset was more than 50% even after primary infection. CONCLUSIONS/SIGNIFICANCE: Poly-reactive and virus serotype cross-reactive IgG are an important component of the innate response in humans during both primary and secondary dengue infection, and "innate specificities" seem to constitute part of the adaptive response in dengue. While of potential importance for protection during secondary infection, cross-reactive B cells will also compete with highly neutralizing B cells and possibly interfere with their development.


Asunto(s)
Linfocitos B/inmunología , Virus del Dengue/fisiología , Dengue/inmunología , Inmunoglobulina G/inmunología , Reacciones Cruzadas , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA