Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38542301

RESUMEN

FacioScapuloHumeral muscular Dystrophy (FSHD) is one of the most prevalent inherited muscle disorders and is linked to the inappropriate expression of the DUX4 transcription factor in skeletal muscles. The deregulated molecular network causing FSHD muscle dysfunction and pathology is not well understood. It has been shown that the hypoxia response factor HIF1α is critically disturbed in FSHD and has a major role in DUX4-induced cell death. In this study, we further explored the relationship between DUX4 and HIF1α. We found that the DUX4 and HIF1α link differed according to the stage of myogenic differentiation and was conserved between human and mouse muscle. Furthermore, we found that HIF1α knockdown in a mouse model of DUX4 local expression exacerbated DUX4-mediated muscle fibrosis. Our data indicate that the suggested role of HIF1α in DUX4 toxicity is complex and that targeting HIF1α might be challenging in the context of FSHD therapeutic approaches.


Asunto(s)
Distrofia Muscular Facioescapulohumeral , Animales , Humanos , Ratones , Diferenciación Celular/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Células Musculares/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/metabolismo
2.
Planta Med ; 87(10-11): 868-878, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34237787

RESUMEN

Translesion synthesis is a DNA damage tolerance mechanism that relies on a series of specialized DNA polymerases able to bypass a lesion on a DNA template strand during replication or post-repair synthesis. Specialized translesion synthesis DNA polymerases pursue replication by inserting a base opposite to this lesion, correctly or incorrectly depending on the lesion nature, involved DNA polymerase(s), sequence context, and still unknown factors. To measure the correct or mutagenic outcome of 8-oxo-7,8-dihydro-2'-deoxyguanosine bypass by translesion synthesis, a primer-extension assay was performed in vitro on a template DNA bearing this lesion in the presence of nuclear proteins extracted from human intestinal epithelial cells (FHs 74 Int cell line); the reaction products were analyzed by both denaturing capillary electrophoresis (to measure the yield of translesion elongation) and pyrosequencing (to determine the identity of the nucleotide inserted in front of the lesion). The influence of 14 natural polyphenols on the correct or mutagenic outcome of translesion synthesis through 8-oxo-7,8-dihydro-2'-deoxyguanosine was then evaluated in 2 experimental conditions by adding the polyphenol either (i) to the reaction mix during the primer extension assay; or (ii) to the culture medium, 24 h before cell harvest and nuclear proteins extraction. Most of the tested polyphenols significantly influenced the outcome of translesion synthesis, either through an error-free (apigenin, baicalein, sakuranetin, and myricetin) or a mutagenic pathway (epicatechin, chalcone, genistein, magnolol, and honokiol).


Asunto(s)
ADN Polimerasa Dirigida por ADN , Desoxiguanosina , 8-Hidroxi-2'-Desoxicoguanosina , ADN , Replicación del ADN , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Humanos
3.
Int J Mol Sci ; 22(13)2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34281273

RESUMEN

Muscular dystrophies (MDs) are a group of inherited degenerative muscle disorders characterized by a progressive skeletal muscle wasting. Respiratory impairments and subsequent hypoxemia are encountered in a significant subgroup of patients in almost all MD forms. In response to hypoxic stress, compensatory mechanisms are activated especially through Hypoxia-Inducible Factor 1 α (HIF-1α). In healthy muscle, hypoxia and HIF-1α activation are known to affect oxidative stress balance and metabolism. Recent evidence has also highlighted HIF-1α as a regulator of myogenesis and satellite cell function. However, the impact of HIF-1α pathway modifications in MDs remains to be investigated. Multifactorial pathological mechanisms could lead to HIF-1α activation in patient skeletal muscles. In addition to the genetic defect per se, respiratory failure or blood vessel alterations could modify hypoxia response pathways. Here, we will discuss the current knowledge about the hypoxia response pathway alterations in MDs and address whether such changes could influence MD pathophysiology.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia/etiología , Hipoxia/metabolismo , Distrofias Musculares/complicaciones , Distrofias Musculares/metabolismo , Animales , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/efectos de los fármacos , Isquemia/etiología , Modelos Biológicos , Desarrollo de Músculos , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/metabolismo , Distrofias Musculares/genética , Estrés Oxidativo , Regeneración , Transducción de Señal
4.
Anal Bioanal Chem ; 411(2): 545, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30443771

RESUMEN

Unfortunately the name of Jean Jacques Vanden Eynde was missing as co-author of this contribution. The correct list of authors is: Ioan O. Neaga, Stephanie Hambye, Ede Bodoki, Claudio Palmieri, Jean Jacques Vanden Eynde, Eugénie Ansseau, Alexandra Belayew, Radu Oprean, Bertrand Blankert.

5.
BMC Cancer ; 18(1): 429, 2018 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-29661164

RESUMEN

BACKGROUND: The relapse rate in early stage non-small cell lung cancer (NSCLC) after surgical resection is high. Prognostic biomarkers may help identify patients who may benefit from additional therapy. The Helicase-like Transcription Factor (HLTF) is a tumor suppressor, altered in cancer either by gene hypermethylation or mRNA alternative splicing. This study assessed the expression and the clinical relevance of wild-type (WT) and variant forms of HLTF RNAs in NSCLC. METHODS: We analyzed online databases (TCGA, COSMIC) for HLTF alterations in NSCLC and assessed WT and spliced HLTF mRNAs expression by RT-ddPCR in 39 lung cancer cell lines and 171 patients with resected stage I-II NSCLC. RESULTS: In silico analyses identified HLTF gene alterations more frequently in lung squamous cell carcinoma than in adenocarcinoma. In cell lines and in patients, WT and I21R HLTF mRNAs were detected, but the latter at lower level. The subgroup of 25 patients presenting a combined low WT HLTF expression and a high I21R HLTF expression had a significantly worse disease-free survival than the other 146 patients in univariate (HR 1.96, CI 1.17-3.30; p = 0.011) and multivariate analyses (HR 1.98, CI 1.15-3.40; p = 0.014). CONCLUSION: A low WT HLTF expression with a high I21R HLTF expression is associated with a poor DFS.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Proteínas de Unión al ADN/genética , Recurrencia Local de Neoplasia/genética , Factores de Transcripción/genética , Adulto , Anciano , Empalme Alternativo/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Metilación de ADN/genética , Supervivencia sin Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Recurrencia Local de Neoplasia/patología , Estadificación de Neoplasias , Pronóstico
6.
Anal Bioanal Chem ; 410(18): 4495-4507, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29736701

RESUMEN

Myotonic dystrophy type 1 (DM1) is an autosomal dominantly inherited degenerative disease with a slow progression. At the present, there is no commercially available treatment, but sustained effort is currently undertaken for the development of a promising lead compound. In the present paper we report the development of a fast, versatile, and cost-effective affinity capillary electrophoresis (ACE) method for the screening and identification of potential drug candidates targeting pathological ARN probes relevant for DM1. The affinity studies were conducted in physiologically relevant conditions using 50 mM HEPES buffer (pH 7.4) in a fused silica capillary dynamically coated with poly(ethylene oxide), by testing a library of potential ligands against (CUG)50 RNA as target probe with a total run time of 4-5 h/ligand. For the most promising ligands, their affinity parameters were assessed and some results formerly reported on the affinity of pentamidine (PTMD) and neomycin against CUG repeats were confirmed. To the best of the authors' knowledge, the estimated binding stoichiometry for some of the tested compounds (i.e., ~ 121:1 for PTMD against the tested RNA probe) is reported for the first time. Additionally, the potential of a novel pentamidine like compound, namely 1,2-ethane bis-1-amino-4-benzamidine (EBAB) with much lower in vivo toxicity than its parent compound has also been confirmed studying its effect on a live cell model by fluorescence microscopy. Further tests, such as the evaluation of the rescue in the mis-splicing of the involved genes, can be performed to corroborate the potential therapeutic value of EBAB in DM1 treatment. Graphical abstract ᅟ.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Electroforesis Capilar/métodos , Distrofia Miotónica/tratamiento farmacológico , Benzamidinas/química , Benzamidinas/farmacología , Evaluación Preclínica de Medicamentos/economía , Electroforesis Capilar/economía , Células HeLa , Humanos , Ligandos , Pentamidina/química , Pentamidina/farmacología , Motivos de Unión al ARN/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
7.
Cell Mol Life Sci ; 73(1): 129-47, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26472339

RESUMEN

The Helicase-like Transcription Factor (HLTF) belongs to the SWI/SNF family of proteins involved in chromatin remodeling. In addition to its role in gene transcription, HLTF has been implicated in DNA repair, which suggests that this protein acts as a tumor suppressor. Accumulating evidence indicates that HLTF expression is altered in various cancers via two mechanisms: gene silencing through promoter hypermethylation or alternative mRNA splicing, which leads to the expression of truncated proteins that lack DNA repair domains. In either case, the alteration of HLTF expression in cancer has a poor prognosis. In this review, we gathered published clinical and molecular data on HLTF. Our purposes are (a) to address whether HLTF alterations could be considered as cancer drivers or passengers and (b) to determine whether its different functions (transcription or DNA repair) could be diverted in clonal selection during cancer progression.


Asunto(s)
Proteínas de Unión al ADN/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias/genética , Factores de Transcripción/genética , Empalme Alternativo , Animales , Secuencia de Bases , Metilación de ADN , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Silenciador del Gen , Genes Supresores de Tumor , Humanos , Neoplasias/metabolismo , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Activación Transcripcional
8.
J Biol Chem ; 288(49): 34989-5002, 2013 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-24145033

RESUMEN

Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant hereditary neuromuscular disorder linked to the deletion of an integral number of 3.3-kb-long macrosatellite repeats (D4Z4) within the subtelomeric region of chromosome 4q. Most genes identified in this region are overexpressed in FSHD myoblasts, including the double homeobox genes DUX4 and DUX4c. We have carried out a simultaneous miRNome/transcriptome analysis of FSHD and control primary myoblasts. Of 365 microRNAs (miRNAs) analyzed in this study, 29 were found to be differentially expressed between FSHD and normal myoblasts. Twenty-one microRNAs (miR-1, miR-7, miR-15a, miR-22, miR-30e, miR-32, miR-107, miR-133a, miR-133b, miR-139, miR-152, miR-206, miR-223, miR-302b, miR-331, miR-362, miR-365, miR-382, miR-496, miR-532, miR-654, and miR-660) were up-regulated, and eight were down-regulated (miR-15b, miR-20b, miR-21, miR-25, miR-100, miR-155, miR-345, and miR-594). Twelve of the miRNAs up-regulated in FHSD were also up-regulated in the cells ectopically expressing DUX4c, suggesting that this gene could regulate miRNA gene transcription. The myogenic miRNAs miR-1, miR-133a, miR-133b, and miR-206 were highly expressed in FSHD myoblasts, which nonetheless did not prematurely enter myogenic differentiation. This could be accounted for by the fact that in FSHD myoblasts, functionally important target genes, including cell cycle, DNA damage, and ubiquitination-related genes, escape myogenic microRNA-induced repression.


Asunto(s)
MicroARNs/genética , MicroARNs/metabolismo , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/metabolismo , Mioblastos Esqueléticos/metabolismo , Adulto , Diferenciación Celular/genética , Células Cultivadas , Regulación hacia Abajo , Femenino , Perfilación de la Expresión Génica , Proteínas de Homeodominio/genética , Humanos , Masculino , Persona de Mediana Edad , Desarrollo de Músculos/genética , Distrofia Muscular Facioescapulohumeral/patología , Mioblastos Esqueléticos/patología , Regulación hacia Arriba , Adulto Joven
9.
BMC Cancer ; 14: 492, 2014 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-25005870

RESUMEN

BACKGROUND: The preoperative characterization of thyroid nodules is a challenge for the clinicians. Fine-needle aspiration (FNA) is the commonly used pre-operative technique for diagnosis of malignant thyroid tumor. However, many benign lesions, with indeterminate diagnosis following FNA, are referred to surgery. There is an urgent need to identify biomarkers that could be used with the FNA to distinguish benign thyroid nodules from malignant tumors. The purpose of the study is to examine the level of expression of the helicase-like transcription factor (HLTF) in relation to neoplastic progression of thyroid carcinomas. METHODS: The presence of HLTF was investigated using quantitative and semi-quantitative immunohistochemistry in a series of 149 thyroid lesion specimens. Our first clinical series was composed of 80 patients, including 20 patients presenting thyroid adenoma, 40 patients presenting thyroid papillary carcinoma, 12 patients presenting thyroid follicular carcinoma and 8 patients presenting anaplastic carcinoma. These specimens were assessed quantitatively using computer assisted microscopy. Our initial results were validated on a second clinical series composed of 40 benign thyroid lesions and 29 malignant thyroid lesions using a semi-quantitative approach. Finally, the HLTF protein expression was investigated by Western blotting in four thyroid cancer cell lines. RESULTS: The decrease of HLTF staining was statistically significant during thyroid tumor progression in terms of both the percentage of mean optical density (MOD), which corresponds to the mean staining intensity (Kruskall-Wallis: p < 0.0005), and the labelling index (LI), which corresponds to the percentage of immunopositive cells (Kruskall-Wallis: p < 10-6). Adenomas presented very pronounced nuclear HLTF immunostaining, whereas papillary carcinomas exhibited HLTF only in the cytoplasm. The number of HLTF positive nuclei was clearly higher in the adenomas group (30%) than in the papillary carcinomas group (5%).The 115-kDa full size HLTF protein was immunodetected in four studied thyroid cancer cell lines. Moreover, three truncated HLTF forms (95-kDa, 80-kDa and 70-kDa) were also found in these tumor cells. CONCLUSIONS: This study reveals an association between HLTF expression level and thyroid neoplastic progression. Nuclear HLTF immunostaining could be used with FNA in an attempt to better distinguish benign thyroid nodules from malignant tumors.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Proteínas de Unión al ADN/metabolismo , Neoplasias de la Tiroides/diagnóstico , Neoplasias de la Tiroides/patología , Factores de Transcripción/metabolismo , Adenocarcinoma Folicular/enzimología , Biomarcadores de Tumor/genética , Carcinoma Papilar/enzimología , Línea Celular Tumoral , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteínas de Unión al ADN/genética , Femenino , Células HeLa , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Neoplasias de la Tiroides/enzimología , Factores de Transcripción/genética
10.
J Cell Mol Med ; 17(1): 76-89, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23206257

RESUMEN

Facioscapulohumeral muscular dystrophy (FSHD) is one of the most frequent hereditary muscle disorders. It is linked to contractions of the D4Z4 repeat array in 4q35. We have characterized the double homeobox 4 (DUX4) gene in D4Z4 and its mRNA transcribed from the distal D4Z4 unit to a polyadenylation signal in the flanking pLAM region. It encodes a transcription factor expressed in FSHD but not healthy muscle cells which initiates a gene deregulation cascade causing differentiation defects, muscle atrophy and oxidative stress. PITX1 was the first identified DUX4 target and encodes a transcription factor involved in muscle atrophy. DUX4 was found expressed in only 1/1000 FSHD myoblasts. We have now shown it was induced upon differentiation and detected in about 1/200 myotube nuclei. The DUX4 and PITX1 proteins presented staining gradients in consecutive myonuclei which suggested a diffusion as known for other muscle nuclear proteins. Both protein half-lifes were regulated by the ubiquitin-proteasome pathway. In addition, we could immunodetect the DUX4 protein in FSHD muscle extracts. As a model, we propose the DUX4 gene is stochastically activated in a small number of FSHD myonuclei. The resulting mRNAs are translated in the cytoplasm around an activated nucleus and the DUX4 proteins diffuse to adjacent nuclei where they activate target genes such as PITX1. The PITX1 protein can further diffuse to additional myonuclei and expand the transcriptional deregulation cascade initiated by DUX4. Together the diffusion and the deregulation cascade would explain how a rare protein could cause the muscle defects observed in FSHD.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Distrofia Muscular Facioescapulohumeral/metabolismo , Mioblastos Esqueléticos/metabolismo , Factores de Transcripción Paired Box/metabolismo , ARN Mensajero/metabolismo , Animales , Diferenciación Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/patología , Citoplasma/genética , Citoplasma/metabolismo , Regulación de la Expresión Génica , Semivida , Proteínas de Homeodominio/genética , Humanos , Ratones , Fibras Musculares Esqueléticas/patología , Proteínas Musculares/genética , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/patología , Mioblastos Esqueléticos/patología , Factores de Transcripción Paired Box/genética , Cultivo Primario de Células , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , ARN Mensajero/genética , Transducción de Señal
11.
Anal Biochem ; 440(1): 23-31, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23711721

RESUMEN

Translesion synthesis (TLS) relies on a series of specialized DNA polymerases able to insert a base either correctly or incorrectly opposite a lesion on a DNA template strand during replication or post-repair synthesis. To measure the correct or mutagenic outcome of 7,8-dihydro-8-oxodeoxyguanosine (8-oxodG) bypass by TLS DNA polymerases, a capillary electrophoresis (CE) method with fluorescent label has been developed. Two oligonucleotides were designed and hybridized: (i) a 72-mer oligonucleotide framing one 8-oxodG at position 40 and (ii) the 39-mer oligonucleotide complementary to the first strand from the 3' end to the lesion and labeled at the 5' end with a fluorochrome. After incubation with FHs 74 Int human intestinal epithelial cell nuclear proteins, in the presence of either deoxyadenosine triphosphate (dATP) or deoxycytidine triphosphate (dCTP), and denaturation, the resulting elongated oligomers were analyzed by fluorescent capillary electrophoresis. This primer extension assay was then validated in terms of linearity (linear range=0.5-2.5 nM), detectability (limits of detection and quantification=0.023 and 0.091 nM, respectively), and precision (total precisions=8.1% and 3.7% for dATP and dCTP, respectively, n=9). The addition of some natural phytochemicals to the reaction mix significantly influences the outcome of TLS either in an error-free way or in a mutagenic way.


Asunto(s)
Productos Biológicos/análisis , Cartilla de ADN/análisis , Replicación del ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Desoxiguanosina/análogos & derivados , Electroforesis Capilar/métodos , 8-Hidroxi-2'-Desoxicoguanosina , Técnicas de Cultivo de Célula , Desoxiguanosina/análisis , Fluorescencia , Humanos , Mutágenos
12.
Skelet Muscle ; 13(1): 21, 2023 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-38104132

RESUMEN

BACKGROUND: Hypoxia is known to modify skeletal muscle biological functions and muscle regeneration. However, the mechanisms underlying the effects of hypoxia on human myoblast differentiation remain unclear. The hypoxic response pathway is of particular interest in patients with hereditary muscular dystrophies since many present respiratory impairment and muscle regeneration defects. For example, an altered hypoxia response characterizes the muscles of patients with facioscapulohumeral dystrophy (FSHD). METHODS: We examined the impact of hypoxia on the differentiation of human immortalized myoblasts (LHCN-M2) cultured in normoxia (PO2: 21%) or hypoxia (PO2: 1%). Cells were grown in proliferation (myoblasts) or differentiation medium for 2 (myocytes) or 4 days (myotubes). We evaluated proliferation rate by EdU incorporation, used myogenin-positive nuclei as a differentiation marker for myocytes, and determined the fusion index and myosin heavy chain-positive area in myotubes. The contribution of HIF1α was studied by gain (CoCl2) and loss (siRNAs) of function experiments. We further examined hypoxia in LHCN-M2-iDUX4 myoblasts with inducible expression of DUX4, the transcription factor underlying FSHD pathology. RESULTS: We found that the hypoxic response did not impact myoblast proliferation but activated precocious myogenic differentiation and that HIF1α was critical for this process. Hypoxia also enhanced the late differentiation of human myocytes, but in an HIF1α-independent manner. Interestingly, the impact of hypoxia on muscle cell proliferation was influenced by dexamethasone. In the FSHD pathological context, DUX4 suppressed HIF1α-mediated precocious muscle differentiation. CONCLUSION: Hypoxia stimulates myogenic differentiation in healthy myoblasts, with HIF1α-dependent early steps. In FSHD, DUX4-HIF1α interplay indicates a novel mechanism by which DUX4 could interfere with HIF1α function in the myogenic program and therefore with FSHD muscle performance and regeneration.


Asunto(s)
Proteínas de Homeodominio , Subunidad alfa del Factor 1 Inducible por Hipoxia , Distrofia Muscular Facioescapulohumeral , Humanos , Diferenciación Celular , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapulohumeral/metabolismo , Mioblastos/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo
13.
Skelet Muscle ; 13(1): 5, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36882853

RESUMEN

BACKGROUND: We have previously demonstrated that double homeobox 4 centromeric (DUX4C) encoded for a functional DUX4c protein upregulated in dystrophic skeletal muscles. Based on gain- and loss-of-function studies we have proposed DUX4c involvement in muscle regeneration. Here, we provide further evidence for such a role in skeletal muscles from patients affected with facioscapulohumeral muscular dystrophy (FSHD). METHODS: DUX4c was studied at RNA and protein levels in FSHD muscle cell cultures and biopsies. Its protein partners were co-purified and identified by mass spectrometry. Endogenous DUX4c was detected in FSHD muscle sections with either its partners or regeneration markers using co-immunofluorescence or in situ proximity ligation assay. RESULTS: We identified new alternatively spliced DUX4C transcripts and confirmed DUX4c immunodetection in rare FSHD muscle cells in primary culture. DUX4c was detected in nuclei, cytoplasm or at cell-cell contacts between myocytes and interacted sporadically with specific RNA-binding proteins involved, a.o., in muscle differentiation, repair, and mass maintenance. In FSHD muscle sections, DUX4c was found in fibers with unusual shape or central/delocalized nuclei (a regeneration feature) staining for developmental myosin heavy chain, MYOD or presenting intense desmin labeling. Some couples of myocytes/fibers locally exhibited peripheral DUX4c-positive areas that were very close to each other, but in distinct cells. MYOD or intense desmin staining at these locations suggested an imminent muscle cell fusion. We further demonstrated DUX4c interaction with its major protein partner, C1qBP, inside myocytes/myofibers that presented features of regeneration. On adjacent muscle sections, we could unexpectedly detect DUX4 (the FSHD causal protein) and its interaction with C1qBP in fusing myocytes/fibers. CONCLUSIONS: DUX4c upregulation in FSHD muscles suggests it contributes not only to the pathology but also, based on its protein partners and specific markers, to attempts at muscle regeneration. The presence of both DUX4 and DUX4c in regenerating FSHD muscle cells suggests DUX4 could compete with normal DUX4c functions, thus explaining why skeletal muscle is particularly sensitive to DUX4 toxicity. Caution should be exerted with therapeutic agents aiming for DUX4 suppression because they might also repress the highly similar DUX4c and interfere with its physiological role.


Asunto(s)
Proteínas de Homeodominio , Distrofia Muscular Facioescapulohumeral , Proteínas de Unión al ARN , Factores de Transcripción , Humanos , Proteínas Portadoras , Citoplasma , Desmina , Proteínas de Homeodominio/genética , Proteínas Mitocondriales , Fibras Musculares Esqueléticas , Distrofia Muscular Facioescapulohumeral/genética , Factores de Transcripción/genética , Proteínas de Unión al ARN/genética
14.
J Biol Chem ; 286(52): 44620-31, 2011 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-21937448

RESUMEN

Facioscapulohumeral muscular dystrophy (FSHD), a dominant hereditary disease with a prevalence of 7 per 100,000 individuals, is associated with a partial deletion in the subtelomeric D4Z4 repeat array on chromosome 4q. The D4Z4 repeat contains a strong transcriptional enhancer that activates promoters of several FSHD-related genes. We report here that the enhancer within the D4Z4 repeat binds the Krüppel-like factor KLF15. KLF15 was found to be up-regulated during myogenic differentiation induced by serum starvation or by overexpression of the myogenic differentiation factor MYOD. When overexpressed, KLF15 activated the D4Z4 enhancer and led to overexpression of DUX4c (Double homeobox 4, centromeric) and FRG2 (FSHD region gene 2) genes, whereas its silencing caused inactivation of the D4Z4 enhancer. In immortalized human myoblasts, the D4Z4 enhancer was activated by the myogenic factor MYOD, an effect that was abolished upon KLF15 silencing or when the KLF15-binding sites within the D4Z4 enhancer were mutated, indicating that the myogenesis-related activation of the D4Z4 enhancer was mediated by KLF15. KLF15 and several myogenesis-related factors were found to be expressed at higher levels in myoblasts, myotubes, and muscle biopsies from FSHD patients than in healthy controls. We propose that KLF15 serves as a molecular link between myogenic factors and the activity of the D4Z4 enhancer, and it thus contributes to the overexpression of the DUX4c and FRG2 genes during normal myogenic differentiation and in FSHD.


Asunto(s)
Cromosomas Humanos Par 4/metabolismo , Elementos de Facilitación Genéticos , Factores de Transcripción de Tipo Kruppel/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapulohumeral/metabolismo , Proteínas Nucleares/metabolismo , Animales , Cromosomas Humanos Par 4/genética , Cricetinae , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica/genética , Células HeLa , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Desarrollo de Músculos/genética , Músculo Esquelético/patología , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/patología , Proteína MioD/genética , Proteína MioD/metabolismo , Proteínas Nucleares/biosíntesis , Proteínas Nucleares/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
EMBO J ; 27(20): 2766-79, 2008 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-18833193

RESUMEN

Facioscapulohumeral muscular dystrophy (FSHD) is caused by an unusual deletion with neomorphic activity. This deletion derepresses genes in cis; however which candidate gene causes the FSHD phenotype, and through what mechanism, is unknown. We describe a novel genetic tool, inducible cassette exchange, enabling rapid generation of isogenetically modified cells with conditional and variable transgene expression. We compare the effects of expressing variable levels of each FSHD candidate gene on myoblasts. This screen identified only one gene with overt toxicity: DUX4 (double homeobox, chromosome 4), a protein with two homeodomains, each similar in sequence to Pax3 and Pax7. DUX4 expression recapitulates key features of the FSHD molecular phenotype, including repression of MyoD and its target genes, diminished myogenic differentiation, repression of glutathione redox pathway components, and sensitivity to oxidative stress. We further demonstrate competition between DUX4 and Pax3/Pax7: when either Pax3 or Pax7 is expressed at high levels, DUX4 is no longer toxic. We propose a hypothesis for FSHD in which DUX4 expression interferes with Pax7 in satellite cells, and inappropriately regulates Pax targets, including myogenic regulatory factors, during regeneration.


Asunto(s)
Regulación de la Expresión Génica , Proteínas de Homeodominio/fisiología , Distrofia Muscular Facioescapulohumeral/patología , Mioblastos/metabolismo , Animales , Diferenciación Celular , Clonación Molecular , Eliminación de Gen , Glutatión/metabolismo , Proteínas de Homeodominio/metabolismo , Ratones , Distrofia Muscular Facioescapulohumeral/metabolismo , Oxidación-Reducción , Factor de Transcripción PAX3 , Factor de Transcripción PAX7/metabolismo , Factores de Transcripción Paired Box/metabolismo , Fenotipo , Transgenes
16.
Hum Genet ; 131(3): 325-40, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21984394

RESUMEN

Facioscapulohumeral muscular dystrophy (FSHD) is the third most common muscular dystrophy after the dystrophinopathies and myotonic dystrophy and is associated with a typical pattern of muscle weakness. Most patients with FSHD carry a large deletion in the polymorphic D4Z4 macrosatellite repeat array at 4q35 and present with 1-10 repeats whereas non-affected individuals possess 11-150 repeats. An almost identical repeat array is present at 10q26 and the high sequence identity between these two arrays can cause difficulties in molecular diagnosis. Each 3.3-kb D4Z4 unit contains a DUX4 (double homeobox 4) gene that, among others, is activated upon contraction of the 4q35 repeat array due to the induction of chromatin remodelling of the 4qter region. A number of 4q subtelomeric sequence variants are now recognised, although FSHD only occurs in association with three 'permissive' haplotypes, each of which is associated with a polyadenylation signal located immediately distal of the last D4Z4 unit. The resulting poly-A tail appears to stabilise DUX4 mRNAs transcribed from this most distal D4Z4 unit in FSHD muscle cells. Synthesis of both the DUX4 transcripts and protein in FSHD muscle cells induces significant cell toxicity. DUX4 is a transcription factor that may target several genes which results in a deregulation cascade which inhibits myogenesis, sensitises cells to oxidative stress and induces muscle atrophy, thus recapitulating many of the key molecular features of FSHD.


Asunto(s)
Proteínas de Homeodominio/genética , Distrofia Muscular Facioescapulohumeral/genética , Proteínas Nucleares/genética , Epigénesis Genética , Distrofia Muscular Facioescapulohumeral/diagnóstico , Distrofia Muscular Facioescapulohumeral/terapia , Eliminación de Secuencia
17.
Ann Neurol ; 69(3): 540-52, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21446026

RESUMEN

OBJECTIVE: Facioscapulohumeral muscular dystrophy (FSHD) is associated with D4Z4 repeat contraction on human chromosome 4q35. This genetic lesion does not result in complete loss or mutation of any gene. Consequently, the pathogenic mechanisms underlying FSHD have been difficult to discern. In leading FSHD pathogenesis models, D4Z4 contractions are proposed to cause epigenetic changes, which ultimately increase expression of genes with myopathic potential. Although no gene has been conclusively linked to FSHD development, recent evidence supports a role for the D4Z4-encoded DUX4 gene in FSHD. In this study, our objective was to test the in vivo myopathic potential of DUX4. METHODS: We delivered DUX4 to zebrafish and mouse muscle by transposon-mediated transgenesis and adeno-associated viral vectors, respectively. RESULTS: Overexpression of DUX4, which encodes a transcription factor, caused abnormalities associated with muscular dystrophy in zebrafish and mice. This toxicity required DNA binding, because a DUX4 DNA binding domain mutant produced no abnormalities. Importantly, we found the myopathic effects of DUX4 were p53 dependent, as p53 inhibition mitigated DUX4 toxicity in vitro, and muscles from p53 null mice were resistant to DUX4-induced damage. INTERPRETATION: Our work demonstrates the myopathic potential of DUX4 in animal muscle. Considering previous studies showed DUX4 was elevated in FSHD patient muscles, our data support the hypothesis that DUX4 overexpression contributes to FSHD development. Moreover, we provide a p53-dependent mechanism for DUX4 toxicity that is consistent with previous studies showing p53 pathway activation in FSHD muscles. Our work justifies further investigation of DUX4 and the p53 pathway in FSHD pathogenesis.


Asunto(s)
Proteínas de Homeodominio/genética , Músculo Esquelético/patología , Enfermedades Musculares/genética , Proteína p53 Supresora de Tumor/genética , Animales , Femenino , Técnicas de Transferencia de Gen , Fuerza de la Mano/fisiología , Proteínas de Homeodominio/metabolismo , Inmunohistoquímica , Masculino , Ratones , Ratones Noqueados , Fuerza Muscular/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatología , Enfermedades Musculares/patología , Enfermedades Musculares/fisiopatología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Pez Cebra
18.
Anal Biochem ; 425(1): 76-9, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22414432

RESUMEN

Oligomerization of linearized plasmids by nuclear proteins extracts, a recognized measure of nonhomologous end-joining (NHEJ) repair capacity, is typically assessed through agarose gel electrophoresis, a labor-intensive procedure. In the current study, a more convenient NHEJ assay was developed using microchips that allow scaled-down separation and quantification. This microchip method allows a considerable reduction in sample amount and analysis time with similar costs and comparable or slightly better precision. Data obtained with quercetin and wortmannin show that the method can be applied to the screening of food components and natural products for positive and negative modulators of NHEJ, potential chemopreventive and indirect genotoxic compounds, respectively.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Reparación del ADN , ADN/química , Electroforesis/instrumentación , Androstadienos/análisis , Electroforesis/métodos , Quercetina/análisis , Wortmanina
19.
Proc Natl Acad Sci U S A ; 104(46): 18157-62, 2007 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-17984056

RESUMEN

Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant disorder linked to contractions of the D4Z4 repeat array in the subtelomeric region of chromosome 4q. By comparing genome-wide gene expression data from muscle biopsies of patients with FSHD to those of 11 other neuromuscular disorders, paired-like homeodomain transcription factor 1 (PITX1) was found specifically up-regulated in patients with FSHD. In addition, we showed that the double homeobox 4 gene (DUX4) that maps within the D4Z4 repeat unit was up-regulated in patient myoblasts at both mRNA and protein level. We further showed that the DUX4 protein could activate transient expression of a luciferase reporter gene fused to the Pitx1 promoter as well as the endogenous Pitx1 gene in transfected C2C12 cells. In EMSAs, DUX4 specifically interacted with a 30-bp sequence 5'-CGGATGCTGTCTTCTAATTAGTTTGGACCC-3' in the Pitx1 promoter. Mutations of the TAAT core affected Pitx1-LUC activation in C2C12 cells and DUX4 binding in vitro. Our results suggest that up-regulation of both DUX4 and PITX1 in FSHD muscles may play critical roles in the molecular mechanisms of the disease.


Asunto(s)
Proteínas de Homeodominio/genética , Distrofia Muscular Facioescapulohumeral/genética , Factores de Transcripción Paired Box/genética , Transactivadores/genética , Secuencia de Bases , ADN , Humanos , Regiones Promotoras Genéticas , Regulación hacia Arriba
20.
Sci Rep ; 10(1): 11301, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32647247

RESUMEN

Intramuscular injection and electroporation of naked plasmid DNA (IMEP) has emerged as a potential alternative to viral vector injection for transgene expression into skeletal muscles. In this study, IMEP was used to express the DUX4 gene into mouse tibialis anterior muscle. DUX4 is normally expressed in germ cells and early embryo, and silenced in adult muscle cells where its pathological reactivation leads to Facioscapulohumeral muscular dystrophy. DUX4 encodes a potent transcription factor causing a large deregulation cascade. Its high toxicity but sporadic expression constitutes major issues for testing emerging therapeutics. The IMEP method appeared as a convenient technique to locally express DUX4 in mouse muscles. Histological analyses revealed well delineated muscle lesions 1-week after DUX4 IMEP. We have therefore developed a convenient outcome measure by quantification of the damaged muscle area using color thresholding. This method was used to characterize lesion distribution and to assess plasmid recirculation and dose-response. DUX4 expression and activity were confirmed at the mRNA and protein levels and through a quantification of target gene expression. Finally, this study gives a proof of concept of IMEP model usefulness for the rapid screening of therapeutic strategies, as demonstrated using antisense oligonucleotides against DUX4 mRNA.


Asunto(s)
Modelos Animales de Enfermedad , Proteínas de Homeodominio/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapulohumeral/metabolismo , Animales , Electroporación , Femenino , Expresión Génica , Proteínas de Homeodominio/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Distrofia Muscular Facioescapulohumeral/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA