Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
J Neurochem ; 140(3): 485-494, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27861891

RESUMEN

Dominant optic atrophy (DOA) is because of mutations in the mitochondrial protein OPA1. The disease principally affects retinal ganglion cells, whose axons degenerate leading to vision impairments, and sometimes other neuronal phenotypes. The exact mechanisms underlying DOA pathogenesis are not known. We previously demonstrated that the main role of OPA1, as a mitochondrial fusogenic and anti-apoptotic protein, are inhibited by interaction with the stress inducible pro-apoptotic BNIP3 protein. Because BNIP3 was recently reported to participate in autophagy and mitophagy, we tested the involvement of these processes in DOA pathogenesis. Using an in vitro neuronal model of DOA, we identified a BNIP3 down-regulation that reduced autophagy and mitophagy. Restoring BNIP3 had a biphasic effect, first rescuing autophagy and mitophagy levels but later leading to cell death. Similarly, in an in vivo mouse model of DOA, we showed that BNIP3 levels are decreased in young adult mice and increase to normal levels upon aging, paralleling disease progression. Altogether, our results indicate that the relationship between OPA1 and BNIP3 may have important bearings on DOA pathogenesis.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Haploinsuficiencia/fisiología , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Mitofagia/fisiología , Neuronas/metabolismo , Atrofia Óptica Autosómica Dominante/metabolismo , Animales , Femenino , GTP Fosfohidrolasas/genética , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Transgénicos , Proteínas Mitocondriales/genética , Neuronas/patología , Atrofia Óptica Autosómica Dominante/genética , Atrofia Óptica Autosómica Dominante/patología , Embarazo , Ratas , Ratas Wistar
2.
Neurobiol Dis ; 102: 113-124, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28286181

RESUMEN

Adult hippocampal neurogenesis is strongly impaired in Alzheimer's disease (AD). In several mouse models of AD, it was shown that adult-born neurons exhibit reduced survival and altered synaptic integration due to a severe lack of dendritic spines. In the present work, using the APPxPS1 mouse model of AD, we reveal that this reduced number of spines is concomitant of a marked deficit in their neuronal mitochondrial content. Remarkably, we show that targeting the overexpression of the pro-neural transcription factor Neurod1 into APPxPS1 adult-born neurons restores not only their dendritic spine density, but also their mitochondrial content and the proportion of spines associated with mitochondria. Using primary neurons, a bona fide model of neuronal maturation, we identified that increases of mitochondrial respiration accompany the stimulating effect of Neurod1 overexpression on dendritic growth and spine formation. Reciprocally, pharmacologically impairing mitochondria prevented Neurod1-dependent trophic effects. Thus, since overexpression of Neurod1 into new neurons of APPxPS1 mice rescues spatial memory, our present data suggest that manipulating the mitochondrial system of adult-born hippocampal neurons provides neuronal plasticity to the AD brain. These findings open new avenues for far-reaching therapeutic implications towards neurodegenerative diseases associated with cognitive impairment.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Espinas Dendríticas/metabolismo , Mitocondrias/metabolismo , Neurogénesis/fisiología , Enfermedad de Alzheimer/patología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Cultivadas , Espinas Dendríticas/patología , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Ratones Transgénicos , Mitocondrias/patología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Biogénesis de Organelos , Distribución Aleatoria , Ratas Wistar
3.
FASEB J ; 30(4): 1523-33, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26700735

RESUMEN

To favor their replication, viruses express proteins that target diverse mammalian cellular pathways. Due to the limited size of many viral genomes, such proteins are endowed with multiple functions, which require targeting to different subcellular compartments. One salient example is the X protein of Borna disease virus, which is expressed both at the mitochondria and in the nucleus. Moreover, we recently demonstrated that mitochondrial X protein is neuroprotective. In this study, we sought to examine the mechanisms whereby the X protein transits between subcellular compartments and to define its localization signals, to enhance its mitochondrial accumulation and thus, potentially, its neuroprotective activity. We transfected plasmids expressing fusion proteins bearing different domains of X fused to enhanced green fluorescent protein (eGFP) and compared their subcellular localization to that of eGFP. We observed that the 5-16 domain of X was responsible for both nuclear export and mitochondrial targeting and identified critical residues for mitochondrial localization. We next took advantage of these findings and constructed mutant X proteins that were targeted only to the mitochondria. Such mutants exhibited enhanced neuroprotective properties in compartmented cultures of neurons grown in microfluidic chambers, thereby confirming the parallel between mitochondrial accumulation of the X protein and its neuroprotective potential.-Ferré C. A., Davezac, N., Thouard, A., Peyrin, J. M., Belenguer, P., Miquel, M.-C., Gonzalez-Dunia, D., Szelechowski, M. Manipulation of the N-terminal sequence of the Borna disease virus X protein improves its mitochondrial targeting and neuroprotective potential.


Asunto(s)
Virus de la Enfermedad de Borna/genética , Mitocondrias/metabolismo , Proteínas Virales/genética , Secuencia de Aminoácidos , Animales , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Axones/efectos de los fármacos , Axones/metabolismo , Western Blotting , Virus de la Enfermedad de Borna/metabolismo , Células COS , Células Cultivadas , Chlorocebus aethiops , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Microscopía Fluorescente , Datos de Secuencia Molecular , Mutación , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Señales de Localización Nuclear/genética , Homología de Secuencia de Aminoácido , Proteínas Virales/metabolismo
4.
Biochim Biophys Acta ; 1833(1): 176-83, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22902477

RESUMEN

The studies addressing the molecular mechanisms governing mitochondrial fusion and fission have brought to light a small group of dynamin-like GTPases (Guanosine-Triphosphate hydrolase) as central regulators of mitochondrial morphology and cristae remodeling, apoptosis, calcium signaling, and metabolism. One of them is the mammalian OPA1 (Optic atrophy 1) protein, which resides inside the mitochondrion anchored to the inner membrane and, in a cleaved form, is associated to oligomeric complexes, in the intermembrane space of the organelle. Here, we review the studies that have made OPA1 emerge as the best understood regulator of mitochondrial inner membrane fusion and cristae remodeling. Further, we re-examine the findings behind the recent claim that OPA1 mediates adrenergic control of lipolysis by functioning as a cytosolic A-kinase anchoring protein (AKAP), on the hemimembrane that envelops the lipid droplet. This article is part of a Special Issue entitled: Mitochondrial dynamics and physiology.


Asunto(s)
GTP Fosfohidrolasas/fisiología , Mitocondrias/fisiología , Animales , Dinaminas/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Regulación Enzimológica de la Expresión Génica/fisiología , Humanos , Lipólisis/genética , Lipólisis/fisiología , Mitocondrias/metabolismo , Dinámicas Mitocondriales/genética , Dinámicas Mitocondriales/fisiología , Modelos Biológicos , Levaduras/enzimología , Levaduras/genética , Levaduras/metabolismo , Levaduras/ultraestructura
5.
Brain ; 136(Pt 5): 1518-33, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23543485

RESUMEN

Mitochondrial dynamics control the organelle's morphology, with fusion leading to the formation of elongated tubules and fission leading to isolated puncta, as well as mitochondrial functions. Recent reports have shown that disruptions of mitochondrial dynamics contribute to neurodegenerative diseases. Mutations of the inner membrane GTPase OPA1 are responsible for type 1 dominant optic atrophy, by mechanisms not fully understood. We show here that in rodent cortical primary neurons, downregulation of the OPA1 protein leads to fragmented mitochondria that become less abundant along the dendrites. Furthermore, this inhibition results in reduced expression of mitochondrial respiratory complexes as well as mitochondrial DNA, decreased mitochondrial membrane potential, and diminished reactive oxygen species levels. The onset of synaptogenesis was markedly impaired through reductions in pre- and postsynaptic structural protein expression and synapse numbers without first affecting the dendritic arborization. With longer time in culture, OPA1 extinction led to a major restriction of dendritic growth, together with reduction of synaptic proteins. Furthermore, in maturing neurons we observed a transitory increase in mitochondrial filament length, associated with marked changes in the expression levels of OPA1, which occurred at the onset of synaptogenesis simultaneously with transitory increase in reactive oxygen species levels and NRF2/NFE2L2 nuclear translocation. This observation suggests that mitochondrial hyperfilamentation acts upstream of a reactive oxygen species-dependent NRF2 transcriptional activity, possibly impacting neuronal maturation, such a process being impaired by insufficient amount of OPA1. Our findings suggest a new role for OPA1 in synaptic maturation and dendritic growth through maintenance of proper mitochondrial oxidative metabolism and distribution, highlighting the role of mitochondrial dynamics in neuronal functioning and providing insights into dominant optic atrophy pathogenesis, as OPA1 loss affecting neuronal maturation could lead to early synaptic dysfunction.


Asunto(s)
GTP Fosfohidrolasas/fisiología , Neurogénesis/fisiología , Neuronas/fisiología , Animales , Diferenciación Celular/fisiología , Supervivencia Celular/fisiología , Células Cultivadas , Femenino , Potencial de la Membrana Mitocondrial/fisiología , Embarazo , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo
6.
EMBO Rep ; 12(3): 223-30, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21274005

RESUMEN

Mitochondria are highly dynamic organelles that can change in number and morphology during cell cycle, development or in response to extracellular stimuli. These morphological dynamics are controlled by a tight balance between two antagonistic pathways that promote fusion and fission. Genetic approaches have identified a cohort of conserved proteins that form the core of mitochondrial remodelling machineries. Mitofusins (MFNs) and OPA1 proteins are dynamin-related GTPases that are required for outer- and inner-mitochondrial membrane fusion respectively whereas dynamin-related protein 1 (DRP1) is the master regulator of mitochondrial fission. We demonstrate here that the Drosophila PMI gene and its human orthologue TMEM11 encode mitochondrial inner-membrane proteins that regulate mitochondrial morphogenesis. PMI-mutant cells contain a highly condensed mitochondrial network, suggesting that PMI has either a pro-fission or an anti-fusion function. Surprisingly, however, epistatic experiments indicate that PMI shapes the mitochondria through a mechanism that is independent of drp1 and mfn. This shows that mitochondrial networks can be shaped in higher eukaryotes by at least two separate pathways: one PMI-dependent and one DRP1/MFN-dependent.


Asunto(s)
Proteínas de Drosophila/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/ultraestructura , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Células Cultivadas , Proteínas del Citoesqueleto/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Dinaminas , Proteínas de Unión al GTP/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Proteínas de la Membrana/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/genética , Proteínas de Transporte de Membrana Mitocondrial , Proteínas Mitocondriales/genética , Morfogénesis/genética , ARN Interferente Pequeño
7.
Neural Regen Res ; 18(2): 293-298, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35900406

RESUMEN

By controlling the proper folding of proteins imported into mitochondria and ensuring crosstalk between the reticulum and mitochondria to modulate intracellular calcium fluxes, Mortalin is a chaperone protein that plays crucial roles in neuronal homeostasis and activity. However, its expression and stability are strongly modified in response to cellular stresses, in particular upon altered oxidative conditions during neurodegeneration. Here, we report and discuss the abundant literature that has highlighted its contribution to the pathophysiology of Parkinson's disease, as well as its therapeutic and prognostic potential in this still incurable pathology.

8.
Dis Model Mech ; 16(9)2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37497665

RESUMEN

Dominant optic atrophy is an optic neuropathy with varying clinical symptoms and progression. A severe disorder is associated with certain OPA1 mutations and includes additional symptoms for >20% of patients. This underscores the consequences of OPA1 mutations in different cellular populations, not only retinal ganglionic cells. We assessed the effects of OPA1 loss of function on oxidative metabolism and antioxidant defences using an RNA-silencing strategy in a human epithelial cell line. We observed a decrease in the mitochondrial respiratory chain complexes, associated with a reduction in aconitase activity related to an increase in reactive oxygen species (ROS) production. In response, the NRF2 (also known as NFE2L2) transcription factor was translocated into the nucleus and upregulated SOD1 and GSTP1. This study highlights the effects of OPA1 deficiency on oxidative metabolism in replicative cells, as already shown in neurons. It underlines a translational process to use cycling cells to circumvent and describe oxidative metabolism. Moreover, it paves the way to predict the evolution of dominant optic atrophy using mathematical models that consider mitochondrial ROS production and their detoxifying pathways.


Asunto(s)
Atrofia Óptica Autosómica Dominante , Humanos , Atrofia Óptica Autosómica Dominante/genética , Atrofia Óptica Autosómica Dominante/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Mitocondrias/metabolismo , Respiración de la Célula , Estrés Oxidativo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo
9.
Front Mol Neurosci ; 16: 1241222, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37736113

RESUMEN

Dominant optic atrophy (DOA) is mainly caused by OPA1 mutations and is characterized by the degeneration of retinal ganglion cells (RGCs), whose axons form the optic nerve. The penetrance of DOA is incomplete and the disease is marked by highly variable expressivity, ranging from asymptomatic patients to some who are totally blind or who suffer from multisystemic effects. No clear genotype-phenotype correlation has been established to date. Taken together, these observations point toward the existence of modifying genetic and/or environmental factors that modulate disease severity. Here, we investigated the influence of genetic background on DOA expressivity by switching the previously described DOA mouse model bearing the c.1065 + 5G → A Opa1 mutation from mixed C3H; C57BL/6 J to a pure C57BL/6 J background. We no longer observed retinal and optic nerve abnormalities; the findings indicated no degeneration, but rather a sex-dependent negative effect on RGC connectivity. This highlights the fact that RGC synaptic alteration might precede neuronal death, as has been proposed in other neurodegenerative diseases, providing new clinical considerations for early diagnosis as well as a new therapeutic window for DOA. Furthermore, our results demonstrate the importance of secondary genetic factors in the variability of DOA expressivity and offer a model for screening for aggravating environmental and genetic factors.

10.
eNeuro ; 10(11)2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37863658

RESUMEN

Mitochondria are integrative hubs central to cellular adaptive pathways. Such pathways are critical in highly differentiated postmitotic neurons, the plasticity of which sustains brain function. Consequently, defects in mitochondria and in their dynamics appear instrumental in neurodegenerative diseases and may also participate in cognitive impairments. To directly test this hypothesis, we analyzed cognitive performances in a mouse mitochondria-based disease model, because of haploinsufficiency in the mitochondrial optic atrophy type 1 (OPA1) protein involved in mitochondrial dynamics. In males, we evaluated adult hippocampal neurogenesis parameters using immunohistochemistry. We performed a battery of tests to assess basal behavioral characteristics and cognitive performances, and tested putative treatments. While in dominant optic atrophy (DOA) mouse models, the known main symptoms are late onset visual deficits, we discovered early impairments in hippocampus-dependent spatial memory attributable to defects in adult neurogenesis. Moreover, less connected adult-born hippocampal neurons showed a decrease in mitochondrial content. Remarkably, voluntary exercise or pharmacological treatment targeting mitochondrial dynamics restored spatial memory in DOA mice. Altogether, our study identifies a crucial role for OPA1-dependent mitochondrial functions in adult neurogenesis, and thus in hippocampal-dependent cognitive functions. More generally, our findings show that adult neurogenesis is highly sensitive to mild mitochondrial defects, generating impairments in spatial memory that can be detected at an early stage and counterbalanced by physical exercise and pharmacological targeting of mitochondrial dynamics. Thus, amplification of mitochondrial function at an early stage appears beneficial for late-onset neurodegenerative diseases.


Asunto(s)
Enfermedades Neurodegenerativas , Atrofia Óptica Autosómica Dominante , Masculino , Ratones , Animales , Memoria Espacial , Mitocondrias/metabolismo , Neurogénesis/fisiología , Neuronas/metabolismo , Atrofia Óptica Autosómica Dominante/metabolismo , Hipocampo/metabolismo , Enfermedades Neurodegenerativas/metabolismo
11.
Semin Cell Dev Biol ; 21(6): 593-8, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20045077

RESUMEN

Mitochondrial morphology varies according to cell type and cellular context from an interconnected filamentous network to isolated dots. This morphological plasticity depends on mitochondrial dynamics, a balance between antagonistic forces of fission and fusion. DRP1 and FIS1 control mitochondrial outer membrane fission and Mitofusins its fusion. This review focuses on OPA1, one of the few known actors of inner membrane dynamics, whose mutations provoke an optic neuropathy. Since its first identification in 2000 the characterization of the functions of OPA1 has made rapid progress thus providing numerous clues to unravel the pathogenetic mechanisms of ADOA-1.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Animales , Apoptosis , ADN Mitocondrial/metabolismo , Metabolismo Energético , GTP Fosfohidrolasas/genética , Humanos , Fusión de Membrana , Mitocondrias/ultraestructura , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/ultraestructura , Mutación , Atrofia Óptica Autosómica Dominante/fisiopatología
12.
EMBO Rep ; 11(6): 459-65, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20436456

RESUMEN

Opa1 modulates mitochondrial fusion, cristae structure and apoptosis. The relationships between these functions and autosomal dominant optic atrophy, caused by mutations in Opa1, are poorly defined. We show that Bnip3 interacts with Opa1, leading to mitochondrial fragmentation and apoptosis. Fission is due to inhibition of Opa1-mediated fusion and is counteracted by Opa1 in an Mfn1-dependent manner. Bnip3-Opa1 interaction is necessary to trigger Opa1 complex disruption in a Bax- and/or Bak-dependent manner, ultimately leading to apoptosis. Our results uncover a direct link between Opa1 on the inner mitochondrial membrane and the apoptotic machinery on the outer membrane that modulates fusion and cristae structure by separate mechanisms. These findings might help to unravel optic atrophy aetiology as retinal ganglion cells are particularly prone to hypoxia, an inductor of Bnip3 expression.


Asunto(s)
Apoptosis , Dinaminas/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , GTP Fosfohidrolasas/química , Células HeLa , Humanos , Unión Proteica , Estructura Cuaternaria de Proteína
13.
Sci Rep ; 11(1): 17705, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34489498

RESUMEN

Mortalin is a mitochondrial chaperone protein involved in quality control of proteins imported into the mitochondrial matrix, which was recently described as a sensor of neuronal stress. Mortalin is down-regulated in neurons of patients with neurodegenerative diseases and levels of Mortalin expression are correlated with neuronal fate in animal models of Alzheimer's disease or cerebral ischemia. To date, however, the links between Mortalin levels, its impact on mitochondrial function and morphology and, ultimately, the initiation of neurodegeneration, are still unclear. In the present study, we used lentiviral vectors to over- or under-express Mortalin in primary neuronal cultures. We first analyzed the early events of neurodegeneration in the axonal compartment, using oriented neuronal cultures grown in microfluidic-based devices. We observed that Mortalin down-regulation induced mitochondrial fragmentation and axonal damage, whereas its over-expression conferred protection against axonal degeneration mediated by rotenone exposure. We next demonstrated that Mortalin levels modulated mitochondrial morphology by acting on DRP1 phosphorylation, thereby further illustrating the crucial implication of mitochondrial dynamics on neuronal fate in degenerative diseases.


Asunto(s)
Corteza Cerebral/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Dinámicas Mitocondriales/fisiología , Neuronas/metabolismo , Animales , Corteza Cerebral/efectos de los fármacos , Proteínas HSP70 de Choque Térmico/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , Neuronas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Rotenona/farmacología
14.
Med Sci (Paris) ; 26(10): 823-9, 2010 Oct.
Artículo en Francés | MEDLINE | ID: mdl-20929672

RESUMEN

Mitochondria are dynamic organelles that continuously move, fuse and divide. Their overall morphology, ranging from a filamentous network to a collection of isolated dots, is determined by fusion-fission equilibrium, which depends on the cellular and physiological context. The machineries of fusion and fission, that are conserved throughout evolution, include three large GTPases of the dynamin-superfamily: Dnm1/DRP1 - involved in fission - as well as Fzo1/MFN and Mgm1/OPA1 - required for fusion. While the activities, mecanisms and regulations of mitochondrial fusion and fission machineries continue to be unravelled, the relevance of mitochondrial dynamics is witnessed by their impact on organelle functions, cell survival and cell differenciation, their requirement for embryonic development and their involvement in neurological diseases.


Asunto(s)
Mitocondrias/fisiología , Mitocondrias/ultraestructura , Animales , Evolución Biológica , Fenómenos Biomecánicos , Fusión Celular , Eliminación de Gen , Técnicas de Inactivación de Genes , Humanos , Cinética , Mutación , Enfermedades del Sistema Nervioso/fisiopatología , Orgánulos/fisiología , Orgánulos/ultraestructura
15.
Biol Cell ; 100(5): 315-25, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18076378

RESUMEN

BACKGROUND INFORMATION: Human OPA1 (optic atrophy type 1) is a dynamin-related protein of the mitochondrial IMS (intermembrane space) involved in membrane fusion and remodelling. Similarly to its yeast orthologue Mgm1p that exists in two isoforms generated by the serine protease Pcp1p/Rbd1p, OPA1 exists in various isoforms generated by alternative splicing and processing. In the present paper, we focus on protease processing of OPA1. RESULTS: We find that various mammalian cell types display a similar pattern of OPA1 isoforms [two L-OPA1 (long isoforms of OPA1) and three S-OPA1 (short isoforms of OPA1)] and that loss of the inner membrane potential, but not inhibition of oxidative phosphorylation or glycolysis, induces rapid and complete processing of L-OPA1 to S-OPA1. In isolated mitochondria, OPA1 processing was inhibited by heavy-metal chelators, pointing to processing by a mitochondrial metalloprotease. The pattern of OPA1 isoforms and its processing kinetics were normal in mitochondria devoid of the serine protease PARL (presenilins-associated rhomboid-like protein) - the human orthologue of Pcp1/Rbd1 - and in cells from patients carrying homozygous mutations in SPG7 (spastic paraplegia type 7), a gene encoding the matrix-oriented metalloprotease paraplegin. In contrast, OPA1 processing kinetics were delayed upon knock-down of YME1L (human yme1-like protein), an IMS-oriented metalloprotease. OPA1 processing was also stimulated during apoptosis, but inhibition of this processing did not affect apoptotic release of OPA1 and cytochrome c. Finally, we show that all OPA1 isoforms interact with Mfn1 (mitofusin 1) and Mfn2 and that these interactions are not affected by dissipation of DeltaPsim (inner mitochondrial membrane potential) or OPA1 processing. CONCLUSIONS: Metalloprotease-mediated processing of OPA1 is modulated by the inner membrane potential and is likely to be mediated by the YME1L protease.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Potencial de la Membrana Mitocondrial/fisiología , Metaloendopeptidasas/metabolismo , Metaloproteasas/metabolismo , Membranas Mitocondriales/enzimología , ATPasas Asociadas con Actividades Celulares Diversas , Células HeLa , Humanos , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana Mitocondrial , Proteínas Mitocondriales/metabolismo , Datos de Secuencia Molecular , Isoformas de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , Interferencia de ARN/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
16.
Neurotox Res ; 36(2): 219-238, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31152314

RESUMEN

The view of mitochondria acting solely as a powerhouse of the cell is no longer accurate. Besides cell bioenergetics, primary targets of mitochondrial studies include their interplay with essential processes within the cell, including redox and calcium homeostasis, and apoptosis. Recent studies evidence the dynamic behavior of mitochondria, continuously moving, fusing, and dividing, and the interaction of these events with cellular degeneration and plasticity in neural cells. Our review summarizes novel data and technologies that are developed and applied to the identification and clarification of the mitochondrial role in neural plasticity using both cultured cells and in vivo approaches. The complete understanding and modulation of such mechanisms may represent a novel and promising therapeutic approach for treatment of diseases affecting central and peripheral nervous system.


Asunto(s)
Encéfalo/metabolismo , Metabolismo Energético/fisiología , Mitocondrias/metabolismo , Animales , Encéfalo/patología , Humanos , Espectroscopía de Resonancia Magnética/métodos , Mitocondrias/patología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología
17.
Neurotox Res ; 36(2): 257-267, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30215161

RESUMEN

Generation of new neurons is a tightly regulated process that involves several intrinsic and extrinsic factors. Among them, a metabolic switch from glycolysis to oxidative phosphorylation, together with mitochondrial remodeling, has emerged as crucial actors of neurogenesis. However, although accumulating data raise the importance of mitochondrial morphology and function in neural stem cell proliferation and differentiation during development, information regarding the contribution of mitochondria to adult neurogenesis processes remains limited. In the present review, we discuss recent evidence covering the importance of mitochondrial morphology, function, and energy metabolism in the regulation of neuronal development and adult neurogenesis, and their impact on memory processes.


Asunto(s)
Mitocondrias/fisiología , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Neuronas/fisiología , Adulto , Animales , Diferenciación Celular/fisiología , Humanos
18.
Dis Model Mech ; 12(2)2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30658998

RESUMEN

Mitochondria continually move, fuse and divide, and these dynamics are essential for the proper function of the organelles. Indeed, the dynamic balance of fusion and fission of mitochondria determines their morphology and allows their immediate adaptation to energetic needs as well as preserving their integrity. As a consequence, mitochondrial fusion and fission dynamics and the proteins that control these processes, which are conserved from yeast to human, are essential, and their disturbances are associated with severe human disorders, including neurodegenerative diseases. For example, mutations in OPA1, which encodes a conserved factor essential for mitochondrial fusion, lead to optic atrophy 1, a neurodegeneration that affects the optic nerve, eventually leading to blindness. Here, by screening a collection of ∼1600 repurposed drugs on a fission yeast model, we identified five compounds able to efficiently prevent the lethality associated with the loss of Msp1p, the fission yeast ortholog of OPA1. One compound, hexestrol, was able to rescue both the mitochondrial fragmentation and mitochondrial DNA (mtDNA) depletion induced by the loss of Msp1p, whereas the second, clomifene, only suppressed the mtDNA defect. Yeast has already been successfully used to identify candidate drugs to treat inherited mitochondrial diseases; this work may therefore provide useful leads for the treatment of optic atrophies such as optic atrophy 1 or Leber hereditary optic neuropathy.


Asunto(s)
ADN Mitocondrial/metabolismo , Evaluación Preclínica de Medicamentos , Reposicionamiento de Medicamentos , Dinámicas Mitocondriales , Schizosaccharomyces/metabolismo , Clomifeno/farmacología , Hexestrol/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , Dominios Proteicos , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo
19.
Sci Rep ; 9(1): 6107, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30988455

RESUMEN

Pathogenic variants of OPA1, which encodes a dynamin GTPase involved in mitochondrial fusion, are responsible for a spectrum of neurological disorders sharing optic nerve atrophy and visual impairment. To gain insight on OPA1 neuronal specificity, we performed targeted metabolomics on rat cortical neurons with OPA1 expression inhibited by RNA interference. Of the 103 metabolites accurately measured, univariate analysis including the Benjamini-Hochberg correction revealed 6 significantly different metabolites in OPA1 down-regulated neurons, with aspartate being the most significant (p < 0.001). Supervised multivariate analysis by OPLS-DA yielded a model with good predictive capability (Q2cum = 0.65) and a low risk of over-fitting (permQ2 = -0.16, CV-ANOVA p-value 0.036). Amongst the 46 metabolites contributing the most to the metabolic signature were aspartate, glutamate and threonine, which all decreased in OPA1 down-regulated neurons, and lysine, 4 sphingomyelins, 4 lysophosphatidylcholines and 32 phosphatidylcholines which were increased. The phospholipid signature may reflect intracellular membrane remodeling due to loss of mitochondrial fusion and/or lipid droplet accumulation. Aspartate and glutamate deficiency, also found in the plasma of OPA1 patients, is likely the consequence of respiratory chain deficiency, whereas the glutamate decrease could contribute to the synaptic dysfunction that we previously identified in this model.


Asunto(s)
Corteza Cerebral/patología , GTP Fosfohidrolasas/deficiencia , Neuronas/patología , Atrofia Óptica Autosómica Dominante/patología , Animales , Ácido Aspártico/metabolismo , Células Cultivadas , Corteza Cerebral/citología , Modelos Animales de Enfermedad , Regulación hacia Abajo , Embrión de Mamíferos , Femenino , GTP Fosfohidrolasas/genética , Ácido Glutámico/metabolismo , Humanos , Metabolómica , Atrofia Óptica Autosómica Dominante/genética , Fosfolípidos/metabolismo , Cultivo Primario de Células , ARN Interferente Pequeño/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA