Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Ecol Appl ; 26(7): 2072-2085, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27755738

RESUMEN

Soil organic matter is critical to sustainable agriculture because it provides nutrients to crops as it decomposes and increases nutrient- and water-holding capacity when built up. Fast- and slow-cycling fractions of soil organic matter can have different impacts on crop production because fast-cycling fractions rapidly release nutrients for short-term plant growth and slow-cycling fractions bind nutrients that mineralize slowly and build up water-holding capacity. We explored the controls on these fractions in a tropical agroecosystem and their relationship to crop yields. We performed physical fractionation of soil organic matter from 48 farms and plots in western Kenya. We found that fast-cycling, particulate organic matter was positively related to crop yields, but did not have a strong effect, while slower-cycling, mineral-associated organic matter was negatively related to yields. Our finding that slower-cycling organic matter was negatively related to yield points to a need to revise the view that stabilization of organic matter positively impacts food security. Our results support a new paradigm that different soil organic matter fractions are controlled by different mechanisms, potentially leading to different relationships with management outcomes, like crop yield. Effectively managing soils for sustainable agriculture requires quantifying the effects of specific organic matter fractions on these outcomes.


Asunto(s)
Productos Agrícolas/crecimiento & desarrollo , Suelo/química , África , Agricultura , Carbono , Monitoreo del Ambiente , Nitrógeno
2.
Glob Chang Biol ; 20(5): 1657-73, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24115607

RESUMEN

Soil microbial communities in Chihuahuan Desert grasslands generally experience highly variable spatiotemporal rainfall patterns. Changes in precipitation regimes can affect belowground ecosystem processes such as decomposition and nutrient cycling by altering soil microbial community structure and function. The objective of this study was to determine if increased seasonal precipitation frequency and magnitude over a 7-year period would generate a persistent shift in microbial community characteristics and soil nutrient availability. We supplemented natural rainfall with large events (one/winter and three/summer) to simulate increased precipitation based on climate model predictions for this region. We observed a 2-year delay in microbial responses to supplemental precipitation treatments. In years 3-5, higher microbial biomass, arbuscular mycorrhizae abundance, and soil enzyme C and P acquisition activities were observed in the supplemental water plots even during extended drought periods. In years 5-7, available soil P was consistently lower in the watered plots compared to control plots. Shifts in soil P corresponded to higher fungal abundances, microbial C utilization activity, and soil pH. This study demonstrated that 25% shifts in seasonal rainfall can significantly influence soil microbial and nutrient properties, which in turn may have long-term effects on nutrient cycling and plant P uptake in this desert grassland.


Asunto(s)
Cambio Climático , Clima Desértico , Microbiota , Estaciones del Año , Microbiología del Suelo , Suelo/química , Bacterias/metabolismo , Hongos/metabolismo , Pradera , Lluvia , Texas
3.
New Phytol ; 181(1): 230-242, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19076724

RESUMEN

Plant productivity in deserts may be more directly responsive to soil water availability than to precipitation. However, measurement of soil moisture alone may not be enough to elucidate plant responses to precipitation pulses, as edaphic factors may influence productivity when soil moisture is adequate. The first objective of the study was to determine the responses of the aboveground annual net primary productivity (ANPP) of three perennial species (from different functional groups) in a Chihuahuan Desert grassland to variation in natural precipitation (annual and seasonal) and a 25% increase in seasonal precipitation (supplemental watering in summer and winter). Secondly, ANPP responses to other key environmental and soil parameters were explored during dry, average, and wet years over a 5-yr period. ANPP predictors for each species were dynamic. High ANPP in Dasylirion leiophyllum was positively associated with higher soil NH(4)-N and frequent larger precipitation events, while that in Bouteloua curtipendula was positively correlated with frequent small summer precipitation events with short inter-pulse periods and supplemental winter water. Opuntia phaeacantha was responsive to small precipitation events with short inter-pulse periods. Although several studies have shown ANPP increases with increases in precipitation and soil moisture in desert systems, this was not observed here as a universal predictor of ANPP, particularly in dry years.


Asunto(s)
Clima Desértico , Liliaceae/crecimiento & desarrollo , Opuntia/crecimiento & desarrollo , Poaceae/crecimiento & desarrollo , Lluvia , Adaptación Fisiológica , Biomasa , Suelo/análisis , Texas
4.
Microb Ecol ; 58(4): 827-42, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19466479

RESUMEN

Global and regional climate models predict higher air temperature and less frequent, but larger precipitation events in arid regions within the next century. While many studies have addressed the impact of variable climate in arid ecosystems on plant growth and physiological responses, fewer studies have addressed soil microbial community responses to seasonal shifts in precipitation and temperature in arid ecosystems. This study examined the impact of a wet (2004), average (2005), and dry (2006) year on subsequent responses of soil microbial community structure, function, and linkages, as well as soil edaphic and nutrient characteristics in a mid-elevation desert grassland in the Chihuahuan Desert. Microbial community structure was classified as bacterial (Gram-negative, Gram-positive, and actinomycetes) and fungal (saprophytic fungi and arbuscular mycorrhiza) categories using (fatty acid methyl ester) techniques. Carbon substrate use and enzymic activity was used to characterize microbial community function annually and seasonally (summer and winter). The relationship between saprophytic fungal community structure and function remained consistent across season independent of the magnitude or frequency of precipitation within any given year. Carbon utilization by fungi in the cooler winter exceeded use in the warmer summer each year suggesting that soil temperature, rather than soil moisture, strongly influenced fungal carbon use and structure and function dynamics. The structure/function relationship for AM fungi and soil bacteria notably changed across season. Moreover, the abundance of Gram-positive bacteria was lower in the winter compared to Gram-negative bacteria. Bacterial carbon use, however, was highest in the summer and lower during the winter. Enzyme activities did not respond to either annual or seasonal differences in the magnitude or timing of precipitation. Specific structural components of the soil microbiota community became uncoupled from total microbial function during different seasons. This change in the microbial structure/function relationship suggests that different components of the soil microbial community may provide similar ecosystem function, but differ in response to seasonal temperature and precipitation. As soil microbes encounter increased soil temperatures and altered precipitation amounts and timing that are predicted for this region, the ability of the soil microbial community to maintain functional resilience across the year may be reduced in this Chihuahuan Desert ecosystem.


Asunto(s)
Bacterias/crecimiento & desarrollo , Clima Desértico , Hongos/crecimiento & desarrollo , Estaciones del Año , Microbiología del Suelo , Temperatura , Bacterias/enzimología , Biomasa , Carbono/metabolismo , Ecosistema , Hongos/enzimología , Suelo/análisis , Texas
5.
J Vis Exp ; (81): e50961, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24299913

RESUMEN

Microbes in soils and other environments produce extracellular enzymes to depolymerize and hydrolyze organic macromolecules so that they can be assimilated for energy and nutrients. Measuring soil microbial enzyme activity is crucial in understanding soil ecosystem functional dynamics. The general concept of the fluorescence enzyme assay is that synthetic C-, N-, or P-rich substrates bound with a fluorescent dye are added to soil samples. When intact, the labeled substrates do not fluoresce. Enzyme activity is measured as the increase in fluorescence as the fluorescent dyes are cleaved from their substrates, which allows them to fluoresce. Enzyme measurements can be expressed in units of molarity or activity. To perform this assay, soil slurries are prepared by combining soil with a pH buffer. The pH buffer (typically a 50 mM sodium acetate or 50 mM Tris buffer), is chosen for the buffer's particular acid dissociation constant (pKa) to best match the soil sample pH. The soil slurries are inoculated with a nonlimiting amount of fluorescently labeled (i.e. C-, N-, or P-rich) substrate. Using soil slurries in the assay serves to minimize limitations on enzyme and substrate diffusion. Therefore, this assay controls for differences in substrate limitation, diffusion rates, and soil pH conditions; thus detecting potential enzyme activity rates as a function of the difference in enzyme concentrations (per sample). Fluorescence enzyme assays are typically more sensitive than spectrophotometric (i.e. colorimetric) assays, but can suffer from interference caused by impurities and the instability of many fluorescent compounds when exposed to light; so caution is required when handling fluorescent substrates. Likewise, this method only assesses potential enzyme activities under laboratory conditions when substrates are not limiting. Caution should be used when interpreting the data representing cross-site comparisons with differing temperatures or soil types, as in situ soil type and temperature can influence enzyme kinetics.


Asunto(s)
Enzimas/análisis , Fluorometría/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Microbiología del Suelo , Suelo/química , Archaea/enzimología , Bacterias/enzimología , Enzimas/metabolismo , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Hongos/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA