Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39193906

RESUMEN

Chromosome instability (CIN) is frequently observed in many tumors. The breakage-fusion-bridge (BFB) cycle has been proposed to be one of the main drivers of CIN during tumorigenesis and tumor evolution. However, the detailed mechanism for the individual steps of the BFB cycle warrants further investigation. Here, we demonstrate that a nuclease-dead Cas9 (dCas9) coupled with a telomere-specific single-guide RNA (sgTelo) can be used to model the BFB cycle. First, we show that targeting dCas9 to telomeres using sgTelo impedes DNA replication at telomeres and induces a pronounced increase of replication stress and DNA damage. Using Single-Molecule Telomere Assay via Optical Mapping (SMTA-OM), we investigate the genome-wide features of telomeres in the dCas9/sgTelo cells and observe a dramatic increase of chromosome end fusions, including fusion/ITS+ and fusion/ITS-. Consistently, we also observe an increase in the formation of dicentric chromosomes, anaphase bridges, and intercellular telomeric chromosome bridges (ITCBs). Utilizing the dCas9/sgTelo system, we uncover many interesting molecular and structural features of the ITCB and demonstrate that multiple DNA repair pathways are implicated in the formation of ITCBs. Our studies shed new light on the molecular mechanisms of the BFB cycle, which will advance our understanding of tumorigenesis, tumor evolution, and drug resistance.

2.
J Cardiovasc Pharmacol ; 80(5): 739-745, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35947104

RESUMEN

ABSTRACT: Binge drinking is a risk factor for cardiac arrhythmias, known as the holiday heart syndrome. Atrial fibrillation (AF) is the most frequently diagnosed arrhythmia in this condition. Recent reports indicated that cardiac ryanodine receptor (RyR2) dysfunction and Ca 2+ leak contribute to alcohol-enhanced AF. In this study, we investigated whether stabilizing RyR2 with dantrolene treatment can prevent alcohol-enhanced AF in rats. A binge drinking rat model was established with alcohol (2 g /kg, IP) delivered once every other day for 4 times. The study consisted of following 3 groups: control group (n = 9), binge alcohol group (n = 10), and binge alcohol + dantrolene (A+D) group (dantrolene, 10 mg/kg, IP before each alcohol injection, n = 9). Echocardiography, left ventricular hemodynamics, in vivo atrial electrophysiology and AF inducibility test, RyR2 phosphorylation level, and blood norepinephrine level were studied 24 hours after the last injection. Ca 2+ leak in isolated atrial myocytes from control and binge alcohol rats was examined. Binge alcohol significantly increased AF inducibility (1/9 in control vs. 8/9 in binge alcohol group, P < 0.05) and AF duration. Dantrolene treatment significantly reduced both AF inducibility (2/9 in dantrolene group, P < 0.05) and AF duration. Binge alcohol significantly increased Ca 2+ leak in isolated atrial myocytes, which was reduced by dantrolene treatment. Blood norepinephrine,7 RyR2 phosphorylation level, cardiac echocardiography, and left ventricular hemodynamics were not significantly affected 24 hours after binge drinking. In conclusion, stabilizing RyR2 with dantrolene treatment significantly attenuated binge drinking-enhanced AF, suggesting that therapeutic strategies stabilizing RyR2 could be a preventive measure to blunt binge drinking-enhanced AF arrhythmogenesis.


Asunto(s)
Fibrilación Atrial , Consumo Excesivo de Bebidas Alcohólicas , Ratas , Animales , Dantroleno/farmacología , Canal Liberador de Calcio Receptor de Rianodina , Fibrilación Atrial/tratamiento farmacológico , Fibrilación Atrial/etiología , Fibrilación Atrial/prevención & control , Consumo Excesivo de Bebidas Alcohólicas/complicaciones , Atrios Cardíacos/metabolismo , Miocitos Cardíacos/metabolismo , Etanol , Norepinefrina , Calcio/metabolismo , Retículo Sarcoplasmático/metabolismo
3.
Exp Cell Res ; 380(2): 180-187, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31039348

RESUMEN

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is associated with obesity and is considered to be an inflammatory disorder characterized by fatty acid accumulation, oxidative stress, and lipotoxicity. We have previously reported that epoxyeicosatrienoic acid-agonist (EET-A) has multiple beneficial effects on cardiac, renal and adipose tissue function while exhibiting both anti-inflammatory and anti-oxidant activities. We hypothesized that EET-A intervention would play a central role in attenuation of obesity-induced steatosis and hepatic fibrosis that leads to NAFLD. METHODS: We studied the effect of EET-A on fatty liver using db/db mice as a model of obesity. Mice were fed a high fat diet (HFD) for 16 weeks and administered EET-A twice weekly for the final 8 weeks. RESULTS: db/db mice fed HFD significantly increased hepatic lipid accumulation as manifested by increases in NAS scores, hepatic fibrosis, insulin resistance, and inflammation, and decreases in mitochondrial mitofusin proteins (Mfn 1/2) and anti-obesity genes Fibroblast growth factor 21 (FGF21) and Cellular Repressor of E1A-Stimulated Genes 1 (CREG1). EET-A administration reversed the decrease in these genes and reduced liver fibrosis. Knockout of Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) in EET-A treated mice resulted in a reversal of the beneficial effects of EET-A administration. CONCLUSIONS: EET-A intervention diminishes fatty acid accumulation, fibrosis, and NFALD associated with an increase in HO-1-PGC1α and increased insulin receptor phosphorylation. A pharmacological strategy involving EETs may offer a potential therapeutic approach in preventing fibrosis, mitochondrial dysfunction, and the development of NAFLD.


Asunto(s)
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Hemo-Oxigenasa 1/metabolismo , Mitocondrias/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Receptores de Leptina/deficiencia , Transducción de Señal/efectos de los fármacos , Ácido 8,11,14-Eicosatrienoico/farmacología , Animales , Modelos Animales de Enfermedad , Hígado Graso/tratamiento farmacológico , Hígado Graso/metabolismo , Ratones , Mitocondrias/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Receptores de Leptina/metabolismo
4.
Am J Physiol Regul Integr Comp Physiol ; 315(5): R934-R944, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30088983

RESUMEN

20-Hydroxyeicosatetraenoic acid (20-HETE) has been shown to positively correlate with body mass index, hyperglycemia, and plasma insulin levels. This study seeks to identify a causal relationship between 20-HETE and obesity-driven insulin resistance. Cyp4a14-/- male mice, a model of 20-HETE overproduction, were fed a regular or high-fat diet (HFD) for 15 wk. 20-SOLA [2,5,8,11,14,17-hexaoxanonadecan-19-yl 20-hydroxyeicosa-6( Z),15( Z)-dienoate], a 20-HETE antagonist, was administered from week 0 or week 7 of HFD. HFD-fed mice gained significant weight (16.7 ± 3.2 vs. 3.8 ± 0.35 g, P < 0.05) and developed hyperglycemia (157 ± 3 vs. 121 ± 7 mg/dl, P < 0.05) and hyperinsulinemia (2.3 ± 0.4 vs. 0.5 ± 0.1 ng/ml, P < 0.05) compared with regular diet-fed mice. 20-SOLA attenuated HFD-induced weight gain (9.4 ± 1 vs. 16.7 ± 3 g, P < 0.05) and normalized the hyperglycemia (157 ± 7 vs. 102 ± 5 mg/dl, P < 0.05) and hyperinsulinemia (1.1 ± 0.1 vs. 2.3 ± 0.4 ng/ml, P < 0.05). The impaired glucose homeostasis and insulin resistance in HFD-fed mice evidenced by reduced insulin and glucose tolerance were also ameliorated by 20-SOLA. Circulatory and adipose tissue 20-HETE levels significantly increased in HFD-fed mice correlating with impaired insulin signaling, including reduction in insulin receptor tyrosine (Y972) phosphorylation and increased serine (S307) phosphorylation of the insulin receptor substrate-1 (IRS-1). 20-SOLA treatments prevented changes in insulin signaling. These findings indicate that 20-HETE contributes to HFD-induced obesity, insulin resistance, and impaired insulin signaling.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Ácidos Hidroxieicosatetraenoicos/metabolismo , Resistencia a la Insulina/fisiología , Obesidad/inducido químicamente , Animales , Glucemia/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Peso Corporal/fisiología , Grasas de la Dieta/efectos adversos , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/metabolismo , Masculino , Ratones Noqueados , Obesidad/fisiopatología
5.
Artículo en Inglés | MEDLINE | ID: mdl-30041041

RESUMEN

We have shown that epoxyeicosatrienoic acids (EETs), specifically 11,12- and 14,15-EETs, reduce adipogenesis in human mesenchymal stem cells and mouse preadipocytes (3T-3L1). In this study, we explore the effects of soluble epoxide hydrolase (sEH) deletion on various aspects of adipocyte-function, including programing for white vs. beige-like fat, and mitochondrial and thermogenic gene-expressions. We further hypothesize that EETs and heme-oxygenase 1 (HO-1) form a synergistic, functional module whose effects on adipocyte and vascular function is greater than the effects of sEH deletion alone. In in vitro studies, we examined the effect of sEH inhibitors on MSC-derived adipocytes. MSC-derived adipocytes exposed to AUDA, an inhibitor of sEH, exhibit an increased number of small and healthy adipocytes, an effect reproduced by siRNA for sEH. in vivo studies indicate that sEH deletion results in a significant decrease in adipocyte size, inflammatory adipokines NOV, TNFα, while increasing adiponectin (p < 0.05). These findings are associated with a decrease in body weight (p < 0.05), and visceral fat (p < 0.05). Importantly, sEH deletion was associated with a significant increase in Mfn1, COX 1, UCP1 and adiponectin (p < 0.03). sEH deletion was manifested by a significant increase in EETs isomers 5,6-EET, 8,9-EET, 11,12-EET, and 14,15-EET and an increased EETs/DHETEs ratio. Notably, activation of HO-1 gene expression further increased the levels of EETs, suggesting that the antioxidant HO-1 system protects EETs from degradation by ROS. These results are novel in that sEH deletion, while increasing EET levels, resulted in reprograming of white fat to express mitochondrial and thermogenic genes, a phenotype characteristic of beige-fat. Thus, EETs agonist(s) and sEH inhibitors may have therapeutic potential in the treatment of metabolic syndrome and obesity.


Asunto(s)
Adiponectina/metabolismo , Tejido Adiposo Beige/metabolismo , Tejido Adiposo Blanco/metabolismo , Epóxido Hidrolasas/metabolismo , Hemo-Oxigenasa 1/metabolismo , Mitocondrias/metabolismo , Células 3T3-L1 , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido 8,11,14-Eicosatrienoico/farmacología , Adipocitos/citología , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Animales , Células Cultivadas , Epóxido Hidrolasas/genética , Expresión Génica/efectos de los fármacos , Hemo-Oxigenasa 1/genética , Humanos , Células Madre Mesenquimatosas/citología , Ratones , Ratones Noqueados , Interferencia de ARN , Solubilidad , Vasodilatadores/farmacología
6.
Artículo en Inglés | MEDLINE | ID: mdl-29787809

RESUMEN

BACKGROUND: We have previously reported that epoxyeicosatrienoic acid (EET) has multiple beneficial effects on renal and adipose tissue function, in addition to its vasodilatory action; it increases insulin sensitivity and inhibits inflammation. In an examination of the signaling mechanisms by which EET reduces renal and peri-renal fat function, we hypothesized that EET ameliorates obesity-induced renal dysfunction by improving sodium excretion, reducing the sodium-chloride cotransporter NCC, lowering blood pressure, and enhancing mitochondrial and thermogenic gene levels in PGC-1α dependent mice. METHODS: EET-agonist treatment normalized glucose metabolism, renal ENaC and NCC protein expression, urinary sodium excretion and blood pressure in obese (db/db) mice. A marked improvement in mitochondrial integrity, thermogenic genes, and PGC-1α-HO-1-adiponectin signaling occurred. Knockout of PGC-1α in EET-treated mice resulted in a reversal of these beneficial effects including a decrease in sodium excretion, elevation of blood pressure and an increase in the pro-inflammatory adipokine nephroblastoma overexpressed gene (NOV). In the elucidation of the effects of EET on peri-renal adipose tissue, EET increased adiponectin, mitochondrial integrity, thermogenic genes and decreased NOV, i.e. "Browning' peri-renal adipose phenotype that occurs under high fat diets. Taken together, these data demonstrate a critical role of an EET agonist in the restoration of healthy adipose tissue with reduced release of inflammatory molecules, such as AngII and NOV, thereby preventing their detrimental impact on sodium absorption and NCC levels and the development of obesity-induced renal dysfunction.


Asunto(s)
Ácido 8,11,14-Eicosatrienoico/farmacología , Canales Epiteliales de Sodio/metabolismo , GTP Fosfohidrolasas/metabolismo , Hemo-Oxigenasa 1/metabolismo , Hipertensión/metabolismo , Riñón/metabolismo , Proteínas de la Membrana/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Hipertensión/tratamiento farmacológico , Riñón/patología , Riñón/fisiopatología , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Enfermedades Renales/fisiopatología , Ratones , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Obesidad/patología , Obesidad/fisiopatología
7.
Am J Physiol Cell Physiol ; 310(11): C993-C1000, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27122158

RESUMEN

The expression of caveolin-1 (Cav1) in corneal epithelium is associated with regeneration potency. We used Cav1(-/-) mice to study the role of Cav1 in modulating corneal wound healing. Western blot and whole cell patch clamp were employed to study the effect of Cav1 deletion on Kir4.1 current density in corneas. We found that Ba(2+)-sensitive K(+) currents in primary cultured murine corneal epithelial cells (pMCE) from Cav1(-/-) were dramatically reduced (602 pA) compared with those from wild type (WT; 1,300 pA). As a consequence, membrane potential was elevated in pMCE from Cav1(-/-) compared with that from WT (-43 ± 7.5 vs. -58 ± 4.0 mV, respectively). Western blot showed that either inhibition of Cav1 expression or Ba(2+) incubation stimulated phosphorylation of the EGFR. The transwell migration assay showed that Cav1 genetic inactivation accelerated cell migration. The regrowth efficiency of human corneal epithelial cells (HCE) transfected with siRNA-Cav1 or negative control was evaluated by scrape injury assay. With the presence of mitomycin C (10 µg/ml) to avoid the influence of cell proliferation, Cav1 inhibition with siRNA significantly increased migration compared with control siRNA in HCE. This promoting effect by siRNA-Cav1 could not be further enhanced by cotransfection with siRNA-Kcnj10. By using corneal debridement, we found that wound healing was significantly accelerated in Cav1(-/-) compared with WT mice (70 ± 10 vs. 36 ± 3%, P < 0.01). Our findings imply that the mechanism by which Cav-1 knockout promotes corneal regrowth is, at least partially, due to the inhibition of Kir4.1 which stimulates EGFR signaling.


Asunto(s)
Caveolina 1/metabolismo , Lesiones de la Cornea/metabolismo , Epitelio Corneal/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Potasio/metabolismo , Cicatrización de Heridas , Animales , Caveolina 1/deficiencia , Caveolina 1/genética , Línea Celular , Movimiento Celular , Lesiones de la Cornea/genética , Lesiones de la Cornea/patología , Modelos Animales de Enfermedad , Epitelio Corneal/lesiones , Epitelio Corneal/patología , Receptores ErbB/metabolismo , Genotipo , Humanos , Potenciales de la Membrana , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Fosforilación , Canales de Potasio de Rectificación Interna/genética , Cultivo Primario de Células , Interferencia de ARN , Transducción de Señal , Transfección
8.
FASEB J ; 29(1): 105-15, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25342128

RESUMEN

Heme oxygenase (HO)-2 deficiency impairs wound healing and exacerbates inflammation following injury. We examine the impact of HO-2 deficiency on macrophage function and the contribution of macrophage HO-2 to inflammatory and repair responses to injury. Corneal epithelial debridement was performed in control and macrophage-depleted HO-2(-/-) and wild-type (WT) mice and in bone marrow chimeras. Peritoneal macrophages were collected for determination of phagocytic activity and classically activated macrophage (M1)-alternatively activated macrophage (M2) polarization. Depletion of macrophages delayed corneal healing (13.2%) and increased neutrophil infiltration (54.1%) by day 4 in WT mice, whereas in HO-2(-/-) mice, it did not worsen the already impaired wound healing and exacerbated inflammation. HO-2(-/-) macrophages displayed an altered M1 phenotype with no significant expression of M2 or M2-like activated cells and a 31.3% reduction in phagocytic capacity that was restored by inducing HO-1 activity or supplementing biliverdin. Macrophage depletion had no effect, whereas adoptive transfer of WT bone marrow improved wound healing (34% on day 4) but did not resolve the exaggerated inflammatory response in HO-2(-/-) mice. These findings indicate that HO-2-deficient macrophages are dysfunctional and that macrophage HO-2 is required for proper macrophage function but is insufficient to correct the impaired healing of the HO-2(-/-) cornea, suggesting that corneal epithelial expression of HO-2 is a key to resolution and repair in wound healing.


Asunto(s)
Lesiones de la Cornea/fisiopatología , Hemo Oxigenasa (Desciclizante)/deficiencia , Macrófagos/enzimología , Macrófagos/fisiología , Cicatrización de Heridas/fisiología , Animales , Trasplante de Médula Ósea , Lesiones de la Cornea/patología , Citocinas/biosíntesis , Epitelio Corneal/patología , Epitelio Corneal/fisiopatología , Femenino , Hemo Oxigenasa (Desciclizante)/genética , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Inflamación/patología , Inflamación/fisiopatología , Activación de Macrófagos , Macrófagos/patología , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Infiltración Neutrófila/fisiología , Fagocitosis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Quimera por Trasplante/fisiología
9.
Artículo en Inglés | MEDLINE | ID: mdl-27418542

RESUMEN

BACKGROUND/OBJECTIVES: Obesity is a risk factor in the development of type 2 diabetes mellitus (DM2), which is associated with increased morbidity and mortality, predominantly as a result of cardiovascular complications. Increased adiposity is a systemic condition characterized by increased oxidative stress (ROS), increased inflammation, inhibition of anti-oxidant genes such as HO-1 and increased degradation of epoxyeicosatrienoic acids (EETs). We previously demonstrated that EETs attenuate mitochondrial ROS. We postulate that EETs increase peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), which controls mitochondrial function, oxidative metabolism and induction of HO-1. METHODS: Cultured murine adipocytes and mice fed a high fat (HF) diet were used to assess functional relationship between EETs, HO-1 and (PGC-1α) using an EET analogue (EET-A) and lentivirus to knock down the PPARGC1A gene. RESULTS: EET-A increased PGC-1α and HO-1 in cultured adipocytes and increased the expression of genes involved in thermogenesis and adipocyte browning (UCP1 and PRDM16, respectively). PGC-1α knockdown prevented EET-A-induced HO-1expression, suggesting that PGC-1α is upstream of HO-1. MRI data obtained from fat tissues showed that EET-A administration to mice on a HF diet significantly reduced total body fat content, subcutaneous and visceral fat deposits and reduced the VAT: SAT ratio. Moreover EET-A normalized the VO2 and RQ (VCO2/VO2) in mice fed a HF diet, an effect that was completely prevented in PGC-1α deficient mice. In addition, EET-A increased mitochondrial biogenesis and function as measured by OPA1, MnSOD, Mfn1, Mfn2, and SIRT3, an effect that was inhibited by knockdown of PGC-1α. CONCLUSION: Taken together, our findings show that EET-A increased PGC-1α thereby increasing mitochondrial viability, increased fusion potential thereby providing metabolic protection and increased VO2 consumption in HF-induced obesity in mice, thus demonstrating that the EET-mediated increase in HO-1 levels require PGC-1α expression.


Asunto(s)
Ácido 8,11,14-Eicosatrienoico/metabolismo , Regulación Enzimológica de la Expresión Génica , Hemo-Oxigenasa 1/metabolismo , Proteínas de la Membrana/metabolismo , Dinámicas Mitocondriales , Biogénesis de Organelos , Factores de Transcripción/metabolismo , Células 3T3-L1 , Ácido 8,11,14-Eicosatrienoico/química , Adipocitos/citología , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Adiponectina/metabolismo , Animales , Ácido Aspártico/análogos & derivados , Ácido Aspártico/química , Ácido Aspártico/farmacología , Diferenciación Celular/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Dieta Alta en Grasa/efectos adversos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Homeostasis/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Dinámicas Mitocondriales/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Proteínas/metabolismo , Sirtuina 3/metabolismo , Superóxido Dismutasa/metabolismo , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Proteína Desacopladora 1/metabolismo
10.
bioRxiv ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38617299

RESUMEN

Chromosome instability (CIN) is frequently observed in many tumors. The breakage-fusion-bridge (BFB) cycle has been proposed to be one of the main drivers of CIN during tumorigenesis and tumor evolution. However, the detailed mechanisms for the individual steps of the BFB cycle warrants further investigation. Here, we demonstrated that a nuclease-dead Cas9 (dCas9) coupled with a telomere-specific single-guide RNA (sgTelo) can be used to model the BFB cycle. First, we showed that targeting dCas9 to telomeres using sgTelo impeded DNA replication at telomeres and induced a pronounced increase of replication stress and DNA damage. Using Single-Molecule Telomere Assay via Optical Mapping (SMTA-OM), we investigated the genome-wide features of telomeres in the dCas9/sgTelo cells and observed a dramatic increase of chromosome end fusions, including fusion/ITS+ and fusion/ITS-.Consistently, we also observed an increase in the formation of dicentric chromosomes, anaphase bridges, and intercellular telomeric chromosome bridges (ITCBs). Utilizing the dCas9/sgTelo system, we uncovered many novel molecular and structural features of the ITCB and demonstrated that multiple DNA repair pathways are implicated in the formation of ITCBs. Our studies shed new light on the molecular mechanisms of the BFB cycle, which will advance our understanding of tumorigenesis, tumor evolution, and drug resistance.

11.
Am J Physiol Renal Physiol ; 304(5): F533-42, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23269645

RESUMEN

Pathways that contribute to TNF production by the kidney are not well defined. Mice given 1% NaCl in the drinking water for 3 days exhibited a 2.5-fold increase in urinary, but not plasma, TNF levels compared with mice given tap water. Since furosemide attenuated the increase in TNF levels, we hypothesized that hypertonic NaCl intake increases renal TNF production by a pathway involving the Na(+)-K(+)-2Cl(-) cotransporter (NKCC2). A 2.5-fold increase in NKCC2A mRNA accumulation was observed in medullary thick ascending limb (mTAL) tubules from mice given 1% NaCl; a concomitant 2-fold increase in nuclear factor of activated T cells 5 (NFAT5) mRNA and protein expression was observed in the outer medulla. Urinary TNF levels were reduced in mice given 1% NaCl after an intrarenal injection of a lentivirus construct designed to specifically knockdown NKCC2A (EGFP-N2A-ex4); plasma levels of TNF did not change after injection of EGFP-N2A-ex4. Intrarenal injection of EGFP-N2A-ex4 also inhibited the increase of NFAT5 mRNA abundance in the outer medulla of mice given 1% NaCl. TNF production by primary cultures of mTAL cells increased approximately sixfold in response to an increase in osmolality to 400 mosmol/kgH2O produced with NaCl and was inhibited in cells transiently transfected with a dnNFAT5 construct. Transduction of cells with EGFP-N2A-ex4 also prevented increases in TNF mRNA and protein production in response to high NaCl concentration and reduced transcriptional activity of a NFAT5 promoter construct. Since NKCC2A expression is restricted to the TAL, NKCC2A-dependent activation of NFAT5 is part of a pathway by which the TAL produces TNF in response to hypertonic NaCl intake.


Asunto(s)
Riñón/metabolismo , Factores de Transcripción NFATC/metabolismo , Cloruro de Sodio/farmacología , Simportadores de Cloruro de Sodio-Potasio/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Células Cultivadas , Riñón/citología , Riñón/efectos de los fármacos , Asa de la Nefrona/citología , Asa de la Nefrona/efectos de los fármacos , Asa de la Nefrona/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción NFATC/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Simportadores de Cloruro de Sodio-Potasio/genética , Miembro 1 de la Familia de Transportadores de Soluto 12 , Factor de Necrosis Tumoral alfa/orina
12.
Heart Rhythm O2 ; 4(9): 549-555, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37744935

RESUMEN

Background: Alcohol and caffeine are the 2 frequently consumed substances in the general population, and the 2 substances are frequently co-consumed. Both substances may increase cardiac arrhythmia risk. However, it is unknown whether alcohol and caffeine co-consumption can synergistically enhance cardiac arrhythmogenesis. Objective: The study sought to investigate whether caffeine and binge drinking synergistically affect cardiac arrhythmogenesis. Methods: A binge drinking rat model (alcohol 2 g/kg, intraperitoneal, every other day for 3 times) was used. Rats (4 months old, both sexes) were randomized into the following 4 groups: binge alcohol-only group (A) (n = 8), nonalcohol, caffeine-only (60 mg/kg, intraperitoneal) group (C) (n = 8), binge alcohol plus caffeine group (A+C) (n = 8), and binge alcohol + caffeine + dantrolene group (A+D) (n = 7, treated with dantrolene 10 mg/kg before each alcohol injection). We also investigated whether alcohol induces Ca2+ sparks and dantrolene treatment attenuates alcohol-induced Ca2+ leak in ventricular myocytes. Results: No arrhythmia was induced with caffeine alone (group C, n = 0 of 8) or alcohol alone (group A, n = 0 of 8). However, alcohol + caffeine induced spontaneous ventricular tachyarrhythmias in all rats (group A+C, n = 8 of 8; P < .001 vs group C or A). Dantrolene prevented ventricular tachyarrhythmia induction in all 7 rats (group A+D, n = 0 of 7; P < .001 vs group A+C). In isolated ventricular myocytes, alcohol significantly increased Ca2+ sparks and dantrolene treatment reduced alcohol-induced Ca2+ sparks. Conclusion: Co-consumption of caffeine and binge drinking synergistically promote spontaneous ventricular tachyarrhythmias in rats. Dantrolene treatment can decrease alcohol-enhanced Ca2+ sparks in vitro and prevented alcohol and caffeine induced ventricular tachyarrhythmias in vivo.

13.
Cell Physiol Biochem ; 29(1-2): 99-110, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22415079

RESUMEN

BACKGROUND/AIMS: HO-1 and EETs are functionally linked and their interactions influence body weight, insulin sensitivity, and serum levels of inflammatory cytokines in metabolic syndrome phenotype of HO-2 null mice. The HO-2 isozyme is essential for regulating physiological levels of ROS. Recent studies have suggested a potential role of EET in modifying adipocyte differentiation through up-regulation of HO-1-adiponectin-AkT signaling in human mesenchymal stem cells (MSCs). Our aim was to examine the consequences of HO deficiency on MSC-derived adipogenesis in vitro using MSC derived from HO-2 null and WT mice in vivo. METHODS: Four-month-old HO-2 null (HO-2(-/-)) and B6/129SF2/J (WT) mice were divided into three groups (four mice/group): WT, HO-2(-/-), and HO-2(-/-) +CoPP. Adipogenesis was performed on purified MSC-derived adipocytes cultured in adipogenic differentiation media and an EET-agonist was added every 3 days. RESULTS: HO-2 depletion of MSC adipocytes resulted in increased adipogenesis (p<0.01) and increased levels of inflammatory cytokines including (TNF)-alpha (p<0.05), (MCP)-1 (p<0.05), and (IL-1)-beta (p<0.05). These results were accompanied by decreases in HO-1 (p<0.05) and subsequently EET and HO activity (p<0.05). Up-regulation of HO-1 resulted in decreased MSC-derived adipocyte differentiation, decreased production of TNF-alpha and MCP-1 and increased levels of adiponectin (p<0.05). Cyp2J5 (p<0.05), HO-1 (p<0.05), and adiponectin mRNA levels (p<0.05) were also decreased in visceral adipose tissue isolated from HO-2 null compared to WT mice. EET agonist stimulation of MSC adipocytes derived from HO-2 null mice yielded similar results. CONCLUSION: Increased levels of EET and HO-1 are essential for protection against the adverse effects of adipocyte hypertrophy and the ensuing metabolic syndrome. These results offer a portal into therapeutic approaches for the prevention of the metabolic syndrome.


Asunto(s)
Adipocitos/metabolismo , Adiponectina/metabolismo , Eicosanoides/metabolismo , Hemo Oxigenasa (Desciclizante)/genética , Hemo-Oxigenasa 1/metabolismo , Adipocitos/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Adiponectina/genética , Animales , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Citocromo P-450 CYP2J2 , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Hemo Oxigenasa (Desciclizante)/metabolismo , Hemo-Oxigenasa 1/antagonistas & inhibidores , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Células Madre Mesenquimatosas/citología , Metaloporfirinas/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Protoporfirinas/farmacología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
14.
Prostaglandins Other Lipid Mediat ; 97(1-2): 1-16, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22100745

RESUMEN

MSCs are considered to be the natural precursors to adipocyte development through the process of adipogenesis. A link has been established between decreased protective effects of EETs or HO-1 and their interaction in metabolic syndrome. Decreases in HO-1 or EET were associated with an increase in adipocyte stem cell differentiation and increased levels of inflammatory cytokines. EET agonist (AKR-I-27-28) inhibited MSC-derived adipocytes and decreased the levels of inflammatory cytokines. We further describe the role of CYP-epoxygenase expression, HO expression, and circulating cytokine levels in an obese mouse, ob/ob(-/-) mouse model. Ex vivo measurements of EET expression within MSCs derived from ob/ob(-/-) showed decreased levels of EETs that were increased by HO induction. This review demonstrates that suppression of HO and EET systems exist in MSCs prior to the development of adipocyte dysfunction. Further, adipocyte dysfunction can be ameliorated by induction of HO-1 and CYP-epoxygenase, i.e. EET.


Asunto(s)
Ácido 8,11,14-Eicosatrienoico/metabolismo , Complicaciones de la Diabetes/metabolismo , Hemo-Oxigenasa 1/metabolismo , Síndrome Metabólico/complicaciones , Animales , Complicaciones de la Diabetes/patología , Complicaciones de la Diabetes/fisiopatología , Humanos , Síndrome Metabólico/metabolismo , Síndrome Metabólico/patología , Síndrome Metabólico/fisiopatología , Unión Proteica
15.
J Cell Physiol ; 226(7): 1732-40, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21506105

RESUMEN

Heme oxygenase (HO) represents an intrinsic cytoprotective system based on its anti-oxidative and anti-inflammatory properties mediated via its products biliverdin/bilirubin and carbon monoxide (CO). We showed that deletion of HO-2 results in impaired corneal wound healing with associated chronic inflammatory complications. This study was undertaken to examine the role of HO activity and the contribution of HO-1 and HO-2 to corneal wound healing in an in vitro epithelial scratch injury model. A scratch wound model was established using human corneal epithelial (HCE) cells. These cells expressed both HO-1 and HO-2 proteins. Injury elicited a rapid and transient increase in HO-1 and HO activity; HO-2 expression was unchanged. Treatment with biliverdin or CORM-A1, a CO donor, accelerated wound closure by 10% at 24 h. Inhibition of HO activity impaired wound closure by more than 50%. However, addition of biliverdin or CORM-A1 reversed the effect of HO inhibition on wound healing. Moreover, knockdown of HO-2 expression, but not HO-1, significantly impaired wound healing. These results indicate that HO activity is required for corneal epithelial cell migration. Inhibition of HO activity impairs wound healing while amplification of its activity restores and accelerates healing. Importantly, HO-2, which is highly expressed in the corneal epithelium, appears to be critical for the wound healing process in the cornea. The mechanisms by which it contributes to cell migration in response to injury may reside in the cytoprotective properties of CO and biliverdin.


Asunto(s)
Epitelio Corneal/enzimología , Hemo Oxigenasa (Desciclizante)/deficiencia , Cicatrización de Heridas , Biliverdina/metabolismo , Boranos/farmacología , Monóxido de Carbono/metabolismo , Carbonatos/farmacología , Movimiento Celular , Células Cultivadas , Citoprotección , Relación Dosis-Respuesta a Droga , Epitelio Corneal/efectos de los fármacos , Epitelio Corneal/lesiones , Epitelio Corneal/patología , Hemo Oxigenasa (Desciclizante)/genética , Hemo-Oxigenasa 1/deficiencia , Hemo-Oxigenasa 1/genética , Humanos , Interferencia de ARN , Factores de Tiempo , Transfección , Cicatrización de Heridas/efectos de los fármacos
16.
Mol Vis ; 17: 1144-52, 2011 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-21552471

RESUMEN

PURPOSE: Heme oxygenase (HO)-2 is highly expressed in the corneal epithelium and is a component of the heme oxygenase system that represents an intrinsic cytoprotective and anti-inflammatory system based on its ability to modulate leukocyte migration and to inhibit expression of inflammatory cytokines and proteins via its products biliverdin/bilirubin and carbon monoxide (CO). We have shown that in HO-2 null mice epithelial injury leads to unresolved corneal inflammation and chronic inflammatory complications including ulceration, perforation and neovascularization. In this study, we explore whether a localized corneal suppression of HO-2 is sufficient for disrupting the innate anti-inflammatory and repair capability of the cornea. METHODS: Silencing hairpin RNA (shRNA) against HO-2 was administered subconjunctivally (100 ng/eye) as well as topically (100 ng/eye) starting one day before corneal epithelial debridement and once daily, thereafter. The corneal epithelium was removed using an Alger Brush in anesthetized mice. Re-epithelialization was assessed by fluorescein staining using a dissecting microscope and image analysis. Inflammatory response was quantified by myeloperoxidase activity. Levels of mRNA were measured by RT-PCR. RESULTS: Local injection of HO-2-specific shRNA led to a 50% reduction in corneal HO-2 mRNA. Administration of HO-2-specific shRNA delayed corneal re-epithelialization when compared with the control shRNA-treated group by 14%, 20%, and 12% at days 3, 4, and 7 after injury, respectively (n=18-24). The observed delay in the wound repair process in HO-2 shRNA treated mice was accompanied by a threefold and 3.5 fold increase in the neovascular response at days 4 and 7 after injury. Further, local knockdown of HO-2 lead to an aberrant chronic inflammatory response, as shown by presence of high numbers of inflammatory cells still present in the cornea at day 7 after injury; 1.04±0.45×10(6) in HO-2 knockdown mice versus 0.14±0.03×10(6) inflammatory cells in control mice. Matrix metalloproteinase-2 (MMP-2) but not MMP-9 increased following injury and remained elevated in the injured corneas of the HO-2 shRNA-treated eyes. CONCLUSIONS: Corneal knockdown of HO-2 via local administration of HO-2-specific shRNA leads to delayed re-epithelialization, increased neovascularization and an aberrant inflammatory response similar to what is observed in the HO-2 null mouse. The elevated MMP-2 expression may contribute to the increase in neovascularization in corneas in which HO-2 expression is suppressed.


Asunto(s)
Córnea/metabolismo , Epitelio Corneal/metabolismo , Expresión Génica/efectos de los fármacos , Hemo Oxigenasa (Desciclizante)/antagonistas & inhibidores , Metaloproteinasa 2 de la Matriz/metabolismo , ARN Interferente Pequeño/farmacología , Administración Tópica , Animales , Córnea/efectos de los fármacos , Lesiones de la Cornea , Epitelio Corneal/efectos de los fármacos , Epitelio Corneal/lesiones , Fluoresceína/análisis , Hemo Oxigenasa (Desciclizante)/genética , Hemo Oxigenasa (Desciclizante)/metabolismo , Inflamación/genética , Inflamación/metabolismo , Inyecciones Intraoculares , Metaloproteinasa 2 de la Matriz/genética , Ratones , Ratones Endogámicos C57BL , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Peroxidasa/análisis , Peroxidasa/metabolismo , Interferencia de ARN , ARN Mensajero/análisis , ARN Mensajero/biosíntesis , ARN Interferente Pequeño/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Regulación hacia Arriba , Cicatrización de Heridas/efectos de los fármacos , Cicatrización de Heridas/genética
17.
Metab Syndr Relat Disord ; 19(5): 281-287, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33566732

RESUMEN

Background: Obesity affects ∼20% of children in the United States and reports of successful dietary treatment are lacking. This study aimed to determine the change in body weight in severely obese youth after carbohydrate-restricted dietary intervention. Methods: This single-center study of a carbohydrate-restricted diet (≤30 grams per day), with unlimited calories, fat, and protein for 3-4 months, examined two groups of severely obese youth of ages 5-18 years: Group A, retrospectively reviewed charts of severely obese youth referred to the Pediatric Obesity Clinic at Hoops Family Children's Hospital and the Ambulatory Division of Marshall Pediatrics, Marshall University School of Medicine, in Huntington, WV, between July 1, 2014 and June 30, 2017 (n = 130), and Group B, prospective participants, referred between July 1, 2018 and December 31, 2018, followed with laboratory studies pre- and postdietary intervention (n = 8). Results: In Group A, 310 participants began the diet, 130 (42%) returned after 3-4 months. Group B had 14 enrollees who began the diet, and 8 followed up at 3-4 months (57%). Girls compared with boys were more likely to complete the diet (P = 0.02). Participants <12 years age were almost twice as likely to complete the diet compared with those 12-18 years (64% vs. 36%, P < 0.01); however, the older group subjects who completed the diet had the same percentage of weight loss compared with those <12 years (6.9% vs. 6.9%). Group A had reductions in weight of 5.1 kg (P < 0.001), body mass index (BMI) 2.5 kg/m2 (P < 0.001), and percentage weight loss 6.9% (P < 0.001). Group B had reductions in weight 9.6 kg (P < 0.01), BMI 4 kg/m2 (P < 0.01), and percentage weight loss 9% (P < 0.01). In addition, participants had significant reductions of fasting serum insulin (P < 0.01), triglycerides (P < 0.01), and 20-hydroxyeicosatetraenoic acid (P < 0.01). Conclusions: This study demonstrated a carbohydrate-restricted diet, utilized short term, effectively reduced weight in a large percentage of severely obese youth, and can be replicated in a busy primary care office.


Asunto(s)
Dieta Baja en Carbohidratos , Obesidad Infantil , Adolescente , Niño , Preescolar , Femenino , Humanos , Masculino , Obesidad Infantil/dietoterapia , Estudios Prospectivos , Estudios Retrospectivos , Resultado del Tratamiento
18.
Circ Res ; 102(2): 234-41, 2008 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-17991880

RESUMEN

Astrocyte signals can modulate arteriolar tone, contributing to regulation of cerebral blood flow, but specific intercellular communication mechanisms are unclear. Here we used isolated cerebral arteriole myocytes, astrocytes, and brain slices to investigate whether carbon monoxide (CO) generated by the enzyme heme oxygenase (HO) acts as an astrocyte-to-myocyte gasotransmitter in the brain. Glutamate stimulated CO production by astrocytes with intact HO-2, but not those genetically deficient in HO-2. Glutamate activated transient K(Ca) currents and single K(Ca) channels in myocytes that were in contact with astrocytes, but did not affect K(Ca) channel activity in myocytes that were alone. Pretreatment of astrocytes with chromium mesoporphyrin (CrMP), a HO inhibitor, or genetic ablation of HO-2 prevented glutamate-induced activation of myocyte transient K(Ca) currents and K(Ca) channels. Glutamate decreased arteriole myocyte intracellular Ca2+ concentration and dilated brain slice arterioles and this decrease and dilation were blocked by CrMP. Brain slice arteriole dilation to glutamate was also blocked by L-2-alpha aminoadipic acid, a selective astrocyte toxin, and paxilline, a K(Ca) channel blocker. These data indicate that an astrocytic signal, notably HO-2-derived CO, is used by glutamate to stimulate arteriole myocyte K(Ca) channels and dilate cerebral arterioles. Our study explains the astrocyte and HO dependence of glutamatergic functional hyperemia observed in the newborn cerebrovascular circulation in vivo.


Asunto(s)
Astrocitos/metabolismo , Monóxido de Carbono/fisiología , Circulación Cerebrovascular , Miocitos del Músculo Liso/metabolismo , Canales de Potasio Calcio-Activados/metabolismo , Sistemas de Mensajero Secundario , Vasodilatación , Arteriolas/fisiología , Astrocitos/fisiología , Monóxido de Carbono/metabolismo , Glutamatos/fisiología , Hemo Oxigenasa (Desciclizante)/metabolismo , Miocitos del Músculo Liso/química , Comunicación Paracrina
19.
J Food Biochem ; 44(12): e13522, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33047319

RESUMEN

Milk thistle cold press oil (MTO) is an herbal remedy derived from Silybum marianum which contains a low level of silymarin and mixture of polyphenols and flavonoids. The effect of MTO on the cardiovascular and metabolic complications of obesity was studied in mice that were fed a high-fat diet (HFD) for 20 weeks and treated with MTO for the final 8 weeks of the diet. MTO treatment attenuated HFD-induced obesity, fasting hyperglycemia, hypertension, and induced markers of mitochondrial fusion and browning of white adipose. Markers of inflammation were also attenuated in both adipose and the liver of MTO-treated mice. In addition, MTO resulted in the improvement of liver fibrosis. These results demonstrate that MTO has beneficial actions to attenuate dietary obesity-induced weight gain, hyperglycemia, hypertension, inflammation, and suggest that MTO supplementation may prove beneficial to patients exhibiting symptoms of metabolic syndrome. PRACTICAL APPLICATIONS: Natural supplements are increasingly being considered as potential therapies for many chronic cardiovascular and metabolic diseases. Milk thistle cold press oil (MTO) is derived from Silybum marianum which is used as a dietary supplement in different parts of the world. The results of the present study demonstrate that MTO supplementation normalizes several metabolic and cardiovascular complications arising from dietary-induced obesity. MTO supplementation also had anti-inflammatory actions in the adipose as well as the liver. These results suggest that supplementation of MTO into the diet of obese individuals may afford protection against the worsening of cardiovascular and metabolic disease and improve inflammation and liver fibrosis.


Asunto(s)
Síndrome Metabólico , Animales , Dieta Alta en Grasa/efectos adversos , Humanos , Síndrome Metabólico/tratamiento farmacológico , Síndrome Metabólico/etiología , Ratones , Silybum marianum , Obesidad/inducido químicamente , Obesidad/tratamiento farmacológico , Semillas
20.
Antioxid Redox Signal ; 32(14): 1045-1060, 2020 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-31891663

RESUMEN

Significance: Heme oxygenase (HO) plays a pivotal role in both vascular and metabolic functions and is involved in many physiological and pathophysiological processes in vascular endothelial cells (ECs) and adipocytes. Recent Advances: From the regulation of adipogenesis in adipose tissue to the adaptive response of vascular tissue in the ECs, HO plays a critical role in the capability of the vascular system to respond and adjust to insults in homeostasis. Recent studies show that HO-1 through regulation of adipocyte and adipose tissue functions ultimately aid not only in local but also in systemic maintenance of homeostasis. Critical Issues: Recent advances have revealed the existence of a cross talk between vascular ECs and adipocytes in adipose tissue. In the pathological state of obesity, this cross talk contributes to the condition's adverse chronic effects, and we propose that specific targeting of the HO-1 gene can restore signaling pathways and improve both vascular and adipose functions. Future Directions: A complete understanding of the role of HO-1 in regulation of cardiovascular homeostasis is important to comprehend the homeostatic regulation as well as in cardiovascular disease. Efforts are required to highlight the effects and the ability to target the HO-1 gene in models of obesity with an emphasis on the role of pericardial fat on cardiovascular health.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Hemo-Oxigenasa 1/metabolismo , Regulación hacia Arriba , Adipocitos/metabolismo , Animales , Enfermedades Cardiovasculares/tratamiento farmacológico , Células Endoteliales/metabolismo , Hemo-Oxigenasa 1/genética , Humanos , Obesidad/tratamiento farmacológico , Obesidad/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA