Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nature ; 585(7823): 79-84, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32663838

RESUMEN

After two decades of improvements, the current human reference genome (GRCh38) is the most accurate and complete vertebrate genome ever produced. However, no single chromosome has been finished end to end, and hundreds of unresolved gaps persist1,2. Here we present a human genome assembly that surpasses the continuity of GRCh382, along with a gapless, telomere-to-telomere assembly of a human chromosome. This was enabled by high-coverage, ultra-long-read nanopore sequencing of the complete hydatidiform mole CHM13 genome, combined with complementary technologies for quality improvement and validation. Focusing our efforts on the human X chromosome3, we reconstructed the centromeric satellite DNA array (approximately 3.1 Mb) and closed the 29 remaining gaps in the current reference, including new sequences from the human pseudoautosomal regions and from cancer-testis ampliconic gene families (CT-X and GAGE). These sequences will be integrated into future human reference genome releases. In addition, the complete chromosome X, combined with the ultra-long nanopore data, allowed us to map methylation patterns across complex tandem repeats and satellite arrays. Our results demonstrate that finishing the entire human genome is now within reach, and the data presented here will facilitate ongoing efforts to complete the other human chromosomes.


Asunto(s)
Cromosomas Humanos X/genética , Genoma Humano/genética , Telómero/genética , Centrómero/genética , Islas de CpG/genética , Metilación de ADN , ADN Satélite/genética , Femenino , Humanos , Mola Hidatiforme/genética , Masculino , Embarazo , Reproducibilidad de los Resultados , Testículo/metabolismo
2.
Nature ; 516(7531): 432-435, 2014 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-25307058

RESUMEN

Eukaryotic genomes are folded into three-dimensional structures, such as self-associating topological domains, the borders of which are enriched in cohesin and CCCTC-binding factor (CTCF) required for long-range interactions. How local chromatin interactions govern higher-order folding of chromatin fibres and the function of cohesin in this process remain poorly understood. Here we perform genome-wide chromatin conformation capture (Hi-C) analysis to explore the high-resolution organization of the Schizosaccharomyces pombe genome, which despite its small size exhibits fundamental features found in other eukaryotes. Our analyses of wild-type and mutant strains reveal key elements of chromosome architecture and genome organization. On chromosome arms, small regions of chromatin locally interact to form 'globules'. This feature requires a function of cohesin distinct from its role in sister chromatid cohesion. Cohesin is enriched at globule boundaries and its loss causes disruption of local globule structures and global chromosome territories. By contrast, heterochromatin, which loads cohesin at specific sites including pericentromeric and subtelomeric domains, is dispensable for globule formation but nevertheless affects genome organization. We show that heterochromatin mediates chromatin fibre compaction at centromeres and promotes prominent inter-arm interactions within centromere-proximal regions, providing structural constraints crucial for proper genome organization. Loss of heterochromatin relaxes constraints on chromosomes, causing an increase in intra- and inter-chromosomal interactions. Together, our analyses uncover fundamental genome folding principles that drive higher-order chromosome organization crucial for coordinating nuclear functions.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Genoma Fúngico , Heterocromatina/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/fisiología , Conformación Molecular , Schizosaccharomyces/genética , Cohesinas
3.
Proc Natl Acad Sci U S A ; 114(21): 5479-5484, 2017 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-28490498

RESUMEN

The dynamic nature of genome organization impacts critical nuclear functions including the regulation of gene expression, replication, and DNA damage repair. Despite significant progress, the mechanisms responsible for reorganization of the genome in response to cellular stress, such as aberrant DNA replication, are poorly understood. Here, we show that fission yeast cells carrying a mutation in the DNA-binding protein Sap1 show defects in DNA replication progression and genome stability and display extensive changes in genome organization. Chromosomal regions such as subtelomeres that show defects in replication progression associate with the nuclear envelope in sap1 mutant cells. Moreover, high-resolution, genome-wide chromosome conformation capture (Hi-C) analysis revealed prominent contacts between telomeres and chromosomal arm regions containing replication origins proximal to binding sites for Taz1, a component of the Shelterin telomere protection complex. Strikingly, we find that Shelterin components are required for interactions between Taz1-associated chromosomal arm regions and telomeres. These analyses reveal an unexpected role for Shelterin components in genome reorganization in cells experiencing replication stress, with important implications for understanding the mechanisms governing replication and genome stability.


Asunto(s)
Daño del ADN , Replicación del ADN , Proteínas de Unión al ADN/fisiología , Genoma Fúngico , Inestabilidad Genómica , Proteínas de Schizosaccharomyces pombe/fisiología , ADN de Cadena Simple/metabolismo , Reordenamiento Génico , Mutación , Origen de Réplica , Schizosaccharomyces
4.
Nucleic Acids Res ; 43(17): 8299-313, 2015 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-26202961

RESUMEN

We have examined the three-dimensional organization of the yeast genome during quiescence by a chromosome capture technique as a means of understanding how genome organization changes during development. For exponentially growing cells we observe high levels of inter-centromeric interaction but otherwise a predominance of intrachromosomal interactions over interchromosomal interactions, consistent with aggregation of centromeres at the spindle pole body and compartmentalization of individual chromosomes within the nucleoplasm. Three major changes occur in the organization of the quiescent cell genome. First, intrachromosomal associations increase at longer distances in quiescence as compared to growing cells. This suggests that chromosomes undergo condensation in quiescence, which we confirmed by microscopy by measurement of the intrachromosomal distances between two sites on one chromosome. This compaction in quiescence requires the condensin complex. Second, inter-centromeric interactions decrease, consistent with prior data indicating that centromeres disperse along an array of microtubules during quiescence. Third, inter-telomeric interactions significantly increase in quiescence, an observation also confirmed by direct measurement. Thus, survival during quiescence is associated with substantial topological reorganization of the genome.


Asunto(s)
Cromosomas Fúngicos/química , Genoma Fúngico , Fase de Descanso del Ciclo Celular/genética , Nucléolo Celular/genética , Centrómero/química , ADN Ribosómico/química , ARN de Transferencia/genética , Origen de Réplica , Saccharomyces cerevisiae/genética
5.
Methods ; 58(3): 268-76, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22652625

RESUMEN

We describe a method, Hi-C, to comprehensively detect chromatin interactions in the mammalian nucleus. This method is based on Chromosome Conformation Capture, in which chromatin is crosslinked with formaldehyde, then digested, and re-ligated in such a way that only DNA fragments that are covalently linked together form ligation products. The ligation products contain the information of not only where they originated from in the genomic sequence but also where they reside, physically, in the 3D organization of the genome. In Hi-C, a biotin-labeled nucleotide is incorporated at the ligation junction, enabling selective purification of chimeric DNA ligation junctions followed by deep sequencing. The compatibility of Hi-C with next generation sequencing platforms makes it possible to detect chromatin interactions on an unprecedented scale. This advance gives Hi-C the power to both explore the biophysical properties of chromatin as well as the implications of chromatin structure for the biological functions of the nucleus. A massively parallel survey of chromatin interaction provides the previously missing dimension of spatial context to other genomic studies. This spatial context will provide a new perspective to studies of chromatin and its role in genome regulation in normal conditions and in disease.


Asunto(s)
Cromatina/genética , Mapeo Cromosómico/métodos , Animales , Células Cultivadas , Reactivos de Enlaces Cruzados , ADN/química , ADN/genética , ADN/aislamiento & purificación , Fragmentación del ADN , Epistasis Genética , Fijadores/química , Formaldehído/química , Biblioteca de Genes , Genoma Humano , Humanos , Conformación de Ácido Nucleico , Análisis de Secuencia de ADN , Fijación del Tejido
6.
Nat Cell Biol ; 19(9): 1071-1080, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28825700

RESUMEN

Structural maintenance of chromosomes (SMC) protein complexes are key determinants of chromosome conformation. Using Hi-C and polymer modelling, we study how cohesin and condensin, two deeply conserved SMC complexes, organize chromosomes in the budding yeast Saccharomyces cerevisiae. The canonical role of cohesin is to co-align sister chromatids, while condensin generally compacts mitotic chromosomes. We find strikingly different roles for the two complexes in budding yeast mitosis. First, cohesin is responsible for compacting mitotic chromosome arms, independently of sister chromatid cohesion. Polymer simulations demonstrate that this role can be fully accounted for through cis-looping of chromatin. Second, condensin is generally dispensable for compaction along chromosome arms. Instead, it plays a targeted role compacting the rDNA proximal regions and promoting resolution of peri-centromeric regions. Our results argue that the conserved mechanism of SMC complexes is to form chromatin loops and that distinct SMC-dependent looping activities are selectively deployed to appropriately compact chromosomes.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Estructuras Cromosómicas , Cromosomas Fúngicos/metabolismo , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/metabolismo , Mitosis , Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/genética , Proteínas de Ciclo Celular/genética , Cromatina/química , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Cromosomas Fúngicos/química , Cromosomas Fúngicos/genética , Simulación por Computador , ADN de Hongos/química , ADN de Hongos/genética , ADN Ribosómico/química , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Proteínas de Unión al ADN/genética , Modelos Genéticos , Modelos Moleculares , Complejos Multiproteicos/genética , Conformación de Ácido Nucleico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Relación Estructura-Actividad , Cohesinas
7.
Cold Spring Harb Protoc ; 2015(6): 580-6, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26034304

RESUMEN

Chromosome conformation capture (3C) is a method for studying chromosomal organization that takes advantage of formaldehyde cross-linking to measure the spatial association of two pieces of chromatin. The 3C method begins with whole-cell formaldehyde fixation of chromatin. After cell lysis, solubilized chromatin is digested with a type II restriction endonuclease, and cross-linked DNA fragments are ligated together. Cross-links are reversed by degradation with proteinase K, and chimeric DNA molecules are purified by standard phenol:chloroform extraction. The resulting 3C library represents chromatin fragments that may be separated by large genomic distances or located on different chromosomes, but are close enough in three-dimensional space for cross-linking. Locus-specific oligonucleotide primers are used to detect interactions of interest in the 3C library using end-point polymerase chain reaction (PCR).


Asunto(s)
Cromatina/metabolismo , Conformación Molecular , Saccharomycetales/ultraestructura , Cromatina/química , Cromosomas/efectos de los fármacos , Reactivos de Enlaces Cruzados/farmacología , Formaldehído/farmacología
8.
Cold Spring Harb Protoc ; 2015(6): 587-92, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26034305

RESUMEN

In experiments using chromosome conformation capture followed by PCR (3C-PCR) or chromosome conformation capture carbon copy (5C), it is critical to control for intrinsic biases in the restriction fragments of interest and the probes or primers used for detection. Characteristics such as GC%, annealing temperature, efficiency of 3C primers or 5C probes, and length of restriction fragment can cause variations in primer or probe performance and fragment ligation efficiency. Bias can be measured empirically by production of a random control library, as described here, to be used with the 3C library of interest.


Asunto(s)
Mapeo Cromosómico , Cromosomas , Genómica/métodos , Conformación de Ácido Nucleico , Cartilla de ADN , Biblioteca de Genes , Reacción en Cadena de la Polimerasa , Levaduras
9.
Cold Spring Harb Protoc ; 2015(6): 593-8, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26034306

RESUMEN

Chromosome conformation capture carbon copy (5C) is a high-throughput method for detecting ligation products of interest in a chromosome conformation capture (3C) library. 5C uses ligation-mediated amplification (LMA) to generate carbon copies of 3C ligation product junctions using single-stranded oligonucleotide probes. This procedure produces a 5C library of short DNA molecules which represent the interactions between the corresponding restriction fragments. The 5C library can be amplified using universal primers containing the Illumina paired-end adaptor sequences for subsequent high-throughput sequencing.


Asunto(s)
Cromosomas/metabolismo , Conformación de Ácido Nucleico , Saccharomycetales/fisiología , Saccharomycetales/ultraestructura , Carbono , Cromatina , Mapeo Cromosómico/métodos , Cartilla de ADN/metabolismo , Biblioteca de Genes
10.
Cold Spring Harb Protoc ; 2015(7): 649-61, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26134906

RESUMEN

Hi-C enables simultaneous detection of interaction frequencies between all possible pairs of restriction fragments in the genome. The Hi-C method is based on chromosome conformation capture (3C), which uses formaldehyde cross-linking to fix chromatin regions that interact in three-dimensional space, irrespective of their genomic locations. In the Hi-C protocol described here, cross-linked chromatin is digested with HindIII and the ends are filled in with a nucleotide mix containing biotinylated dCTP. These fragments are ligated together, and the resulting chimeric molecules are purified and sheared to reduce length. Finally, biotinylated ligation junctions are pulled down with streptavidin-coated beads, linked to high-throughput sequencing adaptors, and amplified via polymerase chain reaction (PCR). The resolution of the Hi-C data set will depend on the depth of sequencing and choice of restriction enzyme. When sufficient sequence reads are obtained, information on chromatin interactions and chromosome conformation can be derived at single restriction fragment resolution for complete genomes.


Asunto(s)
Cromatina/metabolismo , Cromosomas Fúngicos/metabolismo , Conformación de Ácido Nucleico , Saccharomycetales/genética , Cromatina/química , Cromosomas Fúngicos/química
11.
Cold Spring Harb Protoc ; 2015(7): 614-8, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26134912

RESUMEN

Chromosome conformation capture (3C) has revolutionized the ways in which the conformation of chromatin and its relationship to other molecular functions can be studied. 3C-based techniques are used to determine the spatial arrangement of chromosomes in organisms ranging from bacteria to humans. In particular, they can be applied to the study of chromosome folding and organization in model organisms with small genomes and for which powerful genetic tools exist, such as budding yeast. Studies in yeast allow the mechanisms that establish or maintain chromatin structure to be analyzed at very high resolution with relatively low cost, and further our understanding of these fundamental processes in higher eukaryotes as well. Here we provide an overview of chromatin structure and introduce methods for performing 3C, with a focus on studies in budding yeast. Variations of the basic 3C approach (e.g., 3C-PCR, 5C, and Hi-C) can be used according to the scope and goals of a given experiment.


Asunto(s)
Cromatina/metabolismo , Cromosomas Fúngicos/metabolismo , Conformación de Ácido Nucleico , Saccharomycetales/genética , Cromatina/química , Cromosomas Fúngicos/química , Saccharomycetales/química
12.
Cell Rep ; 13(9): 1855-67, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26655901

RESUMEN

Mating-type switching in yeast occurs through gene conversion between the MAT locus and one of two silent loci (HML or HMR) on opposite ends of the chromosome. MATa cells choose HML as template, whereas MATα cells use HMR. The recombination enhancer (RE) located on the left arm regulates this process. One long-standing hypothesis is that switching is guided by mating-type-specific and possibly RE-dependent chromosome folding. Here, we use Hi-C, 5C, and live-cell imaging to characterize the conformation of chromosome III in both mating types. We discovered a mating-type-specific conformational difference in the left arm. Deletion of a 1-kb subregion within the RE, which is not necessary during switching, abolished mating-type-dependent chromosome folding. The RE is therefore a composite element with one subregion essential for donor selection during switching and a separate region involved in modulating chromosome conformation.


Asunto(s)
Cromosomas Fúngicos/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Saccharomyces cerevisiae/genética , Cromatina/metabolismo , Cromosomas Fúngicos/química , Sitios Genéticos , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA