Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Clin Oncol ; 40(1): 12-23, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34752147

RESUMEN

PURPOSE: The immunogenicity and reactogenicity of SARS-CoV-2 vaccines in patients with cancer are poorly understood. METHODS: We performed a prospective cohort study of adults with solid-organ or hematologic cancers to evaluate anti-SARS-CoV-2 immunoglobulin A/M/G spike antibodies, neutralization, and reactogenicity ≥ 7 days following two doses of mRNA-1273, BNT162b2, or one dose of Ad26.COV2.S. We analyzed responses by multivariate regression and included data from 1,638 healthy controls, previously reported, for comparison. RESULTS: Between April and July 2021, we enrolled 1,001 patients; 762 were eligible for analysis (656 had neutralization measured). mRNA-1273 was the most immunogenic (log10 geometric mean concentration [GMC] 2.9, log10 geometric mean neutralization titer [GMT] 2.3), followed by BNT162b2 (GMC 2.4; GMT 1.9) and Ad26.COV2.S (GMC 1.5; GMT 1.4; P < .001). The proportion of low neutralization (< 20% of convalescent titers) among Ad26.COV2.S recipients was 69.9%. Prior COVID-19 infection (in 7.1% of the cohort) was associated with higher responses (P < .001). Antibody titers and neutralization were quantitatively lower in patients with cancer than in comparable healthy controls, regardless of vaccine type (P < .001). Receipt of chemotherapy in the prior year or current steroids were associated with lower antibody levels and immune checkpoint blockade with higher neutralization. Systemic reactogenicity varied by vaccine and correlated with immune responses (P = .002 for concentration, P = .016 for neutralization). In 32 patients who received an additional vaccine dose, side effects were similar to prior doses, and 30 of 32 demonstrated increased antibody titers (GMC 1.05 before additional dose, 3.17 after dose). CONCLUSION: Immune responses to SARS-CoV-2 vaccines are modestly impaired in patients with cancer. These data suggest utility of antibody testing to identify patients for whom additional vaccine doses may be effective and appropriate, although larger prospective studies are needed.


Asunto(s)
Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/uso terapéutico , Neoplasias/inmunología , SARS-CoV-2/inmunología , Anciano , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos
2.
medRxiv ; 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-33564784

RESUMEN

The initial phase of the COVID-19 pandemic in the US was marked by limited diagnostic testing, resulting in the need for seroprevalence studies to estimate cumulative incidence and define epidemic dynamics. In lieu of systematic representational surveillance, venue-based sampling was often used to rapidly estimate a community's seroprevalence. However, biases and uncertainty due to site selection and use of convenience samples are poorly understood. Using data from a SARS-CoV-2 serosurveillance study we performed in Somerville, Massachusetts, we found that the uncertainty in seroprevalence estimates depends on how well sampling intensity matches the known or expected geographic distribution of seropositive individuals in the study area. We use GPS-estimated foot traffic to measure and account for these sources of bias. Our results demonstrated that study-site selection informed by mobility patterns can markedly improve seroprevalence estimates. Such data should be used in the design and interpretation of venue-based serosurveillance studies.

3.
J Immunol Methods ; 484-485: 112832, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32780998

RESUMEN

Critical to managing the spread of COVID-19 is the ability to diagnose infection and define the acquired immune response across the population. While genomic tests for the novel Several Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) detect the presence of viral RNA for a limited time frame, when the virus is shed in the upper respiratory tract, tests able to define exposure and infection beyond this short window of detectable viral replication are urgently needed. Following infection, antibodies are generated within days, providing a durable read-out and archive of exposure and infection. Several antibody tests have emerged to diagnose SARS-CoV-2. Here we report on a qualified quantitative ELISA assay that displays all the necessary characteristics for high-throughput sample analysis. Collectively, this test offers a quantitative opportunity to define both exposure and levels of immunity to SARS-CoV-2.


Asunto(s)
Betacoronavirus/aislamiento & purificación , Técnicas de Laboratorio Clínico/métodos , Infecciones por Coronavirus/diagnóstico , Ensayo de Inmunoadsorción Enzimática , Neumonía Viral/diagnóstico , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/aislamiento & purificación , Betacoronavirus/inmunología , COVID-19 , Prueba de COVID-19 , Infecciones por Coronavirus/sangre , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Estudios de Factibilidad , Ensayos Analíticos de Alto Rendimiento , Humanos , Pandemias , Neumonía Viral/sangre , Neumonía Viral/inmunología , Neumonía Viral/virología , Reproducibilidad de los Resultados , SARS-CoV-2 , Sensibilidad y Especificidad , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA