RESUMEN
The development of calcification by the coccolithophores had a profound impact on ocean carbon cycling, but the evolutionary steps leading to the formation of these complex biomineralized structures are not clear. Heterococcoliths consisting of intricately shaped calcite crystals are formed intracellularly by the diploid life cycle phase. Holococcoliths consisting of simple rhombic crystals can be produced by the haploid life cycle stage but are thought to be formed extracellularly, representing an independent evolutionary origin of calcification. We use advanced microscopy techniques to determine the nature of coccolith formation and complex crystal formation in coccolithophore life cycle stages. We find that holococcoliths are formed in intracellular compartments in a similar manner to heterococcoliths. However, we show that silicon is not required for holococcolith formation and that the requirement for silicon in certain coccolithophore species relates specifically to the process of crystal morphogenesis in heterococcoliths. We therefore propose an evolutionary scheme in which the lower complexity holococcoliths represent an ancestral form of calcification in coccolithophores. The subsequent recruitment of a silicon-dependent mechanism for crystal morphogenesis in the diploid life cycle stage led to the emergence of the intricately shaped heterococcoliths, enabling the formation of the elaborate coccospheres that underpin the ecological success of coccolithophores.
Asunto(s)
Haptophyta , Calcificación Fisiológica , Carbonato de Calcio , Ciclo del Carbono , SilicioRESUMEN
Diatoms are unicellular algae characterized by silica cell walls. These silica elements are known to be formed intracellularly in membrane-bound silica deposition vesicles and exocytosed after completion. How diatoms maintain membrane homeostasis during the exocytosis of these large and rigid silica elements remains unknown. Here we study the membrane dynamics during cell wall formation and exocytosis in two model diatom species, using live-cell confocal microscopy, transmission electron microscopy and cryo-electron tomography. Our results show that during its formation, the mineral phase is in tight association with the silica deposition vesicle membranes, which form a precise mold of the delicate geometrical patterns. We find that during exocytosis, the distal silica deposition vesicle membrane and the plasma membrane gradually detach from the mineral and disintegrate in the extracellular space, without any noticeable endocytic retrieval or extracellular repurposing. We demonstrate that within the cell, the proximal silica deposition vesicle membrane becomes the new barrier between the cell and its environment, and assumes the role of a new plasma membrane. These results provide direct structural observations of diatom silica exocytosis, and point to an extraordinary mechanism in which membrane homeostasis is maintained by discarding, rather than recycling, significant membrane patches.
Asunto(s)
Diatomeas , Diatomeas/metabolismo , Pared Celular/metabolismo , Orgánulos/metabolismo , Dióxido de Silicio/química , ExocitosisRESUMEN
Biomineralization processes exert varying levels of control over crystallization, ranging from poorly ordered polycrystalline arrays to intricately shaped single crystals. Coccoliths, calcified scales formed by unicellular algae, are a model for a highly controlled crystallization process. The coccolith crystals nucleate next to an organic oval structure that was termed the base plate, leading to the assumption that it is responsible for the oriented nucleation of the crystals via stereochemical interactions. In recent years, several works focusing on a well-characterized model species demonstrated a fundamental role for indirect interactions that facilitate coccolith crystallization. Here, we developed the tools to extract the base plates from five different species, giving the opportunity to systematically explore the relations between base plate and coccolith properties. We used multiple imaging techniques to evaluate the structural and chemical features of the base plates under native hydrated conditions. The results show a wide range of properties, overlaid on a common rudimentary scaffold that lacks any detectable structural or chemical motifs that can explain direct nucleation control. This work emphasizes that it is the combination between the base plate and the chemical environment inside the cell that cooperatively facilitate the exquisite control over the crystallization process. STATEMENT OF SIGNIFICANCE: Biological organic scaffolds can serve as functional surfaces that guide the formation of inorganic materials. However, in many cases the specific interactions that facilitate such tight regulation are complex and not fully understood. In this work, we elucidate the architecture of such amodel biological template, an organic scale that directs the assembly of exquisite crystalline arrays of marine microalgae. By using cryo electron microscopy, we reveal the native state organization of these scales from several species. The observed similarities and differences allow us to propose that the chemical microenvironment, rather than stereochemical matching, is the pivotal regulator of the process.