Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Biol Chem ; 292(46): 18897-18915, 2017 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-28928219

RESUMEN

Skp1 is a conserved protein linking cullin-1 to F-box proteins in SCF (Skp1/Cullin-1/F-box protein) E3 ubiquitin ligases, which modify protein substrates with polyubiquitin chains that typically target them for 26S proteasome-mediated degradation. In Dictyostelium (a social amoeba), Toxoplasma gondii (the agent for human toxoplasmosis), and other protists, Skp1 is regulated by a unique pentasaccharide attached to hydroxylated Pro-143 within its C-terminal F-box-binding domain. Prolyl hydroxylation of Skp1 contributes to O2-dependent Dictyostelium development, but full glycosylation at that position is required for optimal O2 sensing. Previous studies have shown that the glycan promotes organization of the F-box-binding region in Skp1 and aids in Skp1's association with F-box proteins. Here, NMR and MS approaches were used to determine the glycan structure, and then a combination of NMR and molecular dynamics simulations were employed to characterize the impact of the glycan on the conformation and motions of the intrinsically flexible F-box-binding domain of Skp1. Molecular dynamics trajectories of glycosylated Skp1 whose calculated monosaccharide relaxation kinetics and rotational correlation times agreed with the NMR data indicated that the glycan interacts with the loop connecting two α-helices of the F-box-combining site. In these trajectories, the helices separated from one another to create a more accessible and dynamic F-box interface. These results offer an unprecedented view of how a glycan modification influences a disordered region of a full-length protein. The increased sampling of an open Skp1 conformation can explain how glycosylation enhances interactions with F-box proteins in cells.


Asunto(s)
Proteínas Bacterianas/metabolismo , Dictyostelium/metabolismo , Proteínas F-Box/metabolismo , Oxígeno/metabolismo , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Bacterianas/química , Sitios de Unión , Conformación de Carbohidratos , Dictyostelium/química , Proteínas F-Box/química , Glicopéptidos/análisis , Glicopéptidos/metabolismo , Glicosilación , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Polisacáridos/análisis , Polisacáridos/metabolismo , Unión Proteica , Conformación Proteica , Dominios Proteicos , Mapas de Interacción de Proteínas , Proteínas Quinasas Asociadas a Fase-S/química , Proteínas Ligasas SKP Cullina F-box/química , Ubiquitina-Proteína Ligasas/química
2.
Anal Chem ; 87(4): 2228-35, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25594283

RESUMEN

Negative ions produced by electrospray ionization were used to evaluate the isomeric heterogeneity of neutral oligosaccharide-alditols isolated from bovine submaxillary mucin (BSM). The oligosaccharide-alditol mixture was preseparated on an off-line high-performance liquid chromatography (HPLC) column, and the structural homogeneity of individual LC fractions was investigated using a Synapt G2 traveling wave ion mobility spectrometer coupled between quadupole and time-of-flight mass spectrometers. Mixtures of isomers separated by both chromatography and ion mobility spectrometry were studied. Tandem mass spectrometry (MS/MS) of multiple mobility peaks having the same mass-to-charge ratio (m/z) demonstrated the presence of different structural isomers and not differences in ion conformations due to charge site location. Although the oligosaccharide-alditol mixture was originally separated by HPLC, multiple ion mobility peaks due to structural isomers were observed for a number of oligosaccharide-alditols from single LC fractions. The collision-induced dissociation cells located in front of and after the ion mobility separation device enabled oligosaccharide precursor or product ions to be separated by ion mobility and independent fragmentation spectra to be acquired for isomeric carbohydrate precursor or product ions. MS/MS spectra so obtained for independent mobility peaks at a single m/z demonstrated the presence of structural variants or stereochemical isomers having the same molecular formula. This was observed both for oligosaccharide precursor and product ions. In addition, mobilities of both [M - H](-) and [M + Cl](-) ions, formed by adding NH4OH or NH4Cl to the electrospray solvent, were examined and compared for selected oligosaccharide-alditols. Better separation among structural isomers appeared to be achieved for some [M + Cl](-) anions.


Asunto(s)
Mucinas/química , Oligosacáridos/química , Alcoholes del Azúcar/química , Animales , Bovinos , Cromatografía Líquida de Alta Presión , Espectrometría de Masas , Estereoisomerismo
3.
Anal Chem ; 85(5): 2760-9, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23330948

RESUMEN

A high resolution ion mobility spectrometer was interfaced to a Synapt G2 high definition mass spectrometer (HDMS) to produce IMMS-IMMS analysis. The hybrid instrument contained an electrospray ionization source, two ion gates, an ambient pressure linear ion mobility drift tube, a quadrupole mass filter, a traveling wave ion mobility spectrometer (TWIMS), and a time-of-flight mass spectrometer. The dual gate drift tube ion mobility spectrometer (DTIMS) could be used to acquire traditional IMS spectra but also could selectively transfer specific mobility selected precursor ions to the Synapt G2 HDMS for mass filtration (quadrupole). The mobility and mass selected ions could then be introduced into a collision cell for fragmentation followed by mobility separation of the fragment ions with the traveling wave ion mobility spectrometer. These mobility separated fragment ions are finally mass analyzed using a time-of-flight mass spectrometer. This results in an IMMS-IMMS analysis and provides a method to evaluate the isomeric heterogeneity of precursor ions by both DTIMS and TWIMS to acquire a mobility-selected and mass-filtered fragmentation pattern and to additionally obtain traveling wave ion mobility spectra of the corresponding product ions. This new IMMS(2) instrument enables the structural diversity of carbohydrates to be studied in greater detail. The physical separation of isomeric oligosaccharide mixtures was achieved by both DTIMS and TWIMS, with DTIMS demonstrating higher resolving power (70-80) than TWIMS (30-40). Mobility selected MS/MS spectra were obtained, and TWIMS evaluation of product ions showed that isomeric forms of fragment ions existed for identical m/z values.


Asunto(s)
Oligosacáridos/química , Espectrometría de Masas en Tándem/métodos , Isomerismo
4.
Rapid Commun Mass Spectrom ; 27(23): 2699-709, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24591031

RESUMEN

RATIONALE: Carbohydrates are highly variable in structure owing to differences in their anomeric configurations, monomer stereochemistry, inter-residue linkage positions and general branching features. The separation of carbohydrate isomers poses a great challenge for current analytical techniques. METHODS: The isomeric heterogeneity of disaccharide ions and monosaccharide-glycolaldehyde product ions was evaluated using electrospray traveling wave ion mobility mass spectrometry (Synapt G2 high-definition mass spectrometer) in both positive and negative ion modes. RESULTS: The separation of isomeric disaccharide ions was observed but not fully achieved based on their mobility profiles. The mobilities of isomeric product ions, the monosaccharide-glycolaldehydes, derived from different disaccharide isomers were measured. Multiple mobility peaks were observed for both monosaccharide-glycolaldehyde cations and anions, indicating that there was more than one structural configuration in the gas phase as verified by NMR in solution. More importantly, the mobility patterns for isomeric monosaccharide-glycolaldehyde product ions were different, which enabled partial characterization of their respective disaccharide ions. Abundant disaccharide cluster ions were also observed. The results showed that a majority of isomeric cluster ions had different drift times and, moreover, more than one mobility peak was detected for a number of specific cluster ions. CONCLUSIONS: It is demonstrated that ion mobility mass spectrometry is an advantageous method to assess the isomeric heterogeneity of carbohydrate compounds. It is capable of differentiating different types of carbohydrate ions having identical m/z values as well as multiple structural configurations of single compounds.


Asunto(s)
Disacáridos/química , Espectrometría de Masas/métodos , Isomerismo , Espectrometría de Masas/instrumentación
5.
Int J Mass Spectrom ; 352: 9-18, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24634605

RESUMEN

Rapid separation and independent analysis of isomeric species are needed for the structural characterization of carbohydrates in glycomics research. Ion mobility-mass spectrometry techniques were used to examine a series of isomeric neutral oligosaccharide-alditols derived from bovine submaxillary mucin. Several analytical techniques were employed: (1) off line separation of the oligosaccharide-alditol mixture by HPLC; (2) direct and rapid evaluation of isomeric heterogeneity of oligosaccharides by electrospray ionization-ion mobility-time of flight mass spectrometry; and (3) mobility-selected MS2 and MS3 to evaluate isomeric mobility peaks by dual gate ion mobility-tandem mass spectrometry. Multiple isomeric ion mobility peaks were observed for the majority of oligosaccharide-alditols, which was achieved on the millisecond time scale after LC separation. Fragmentation spectra obtained from the collision-induced dissociation of isomeric precursor ions could be essentially identical, or dramatically different for a given precursor m/z using the dual-gate ion mobility quadrupole ion trap mass spectrometer. This further confirmed the need for rapid physical resolution of isomeric precursor species prior to their tandem mass spectral analysis.

6.
Anal Chem ; 84(7): 3231-9, 2012 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-22339760

RESUMEN

Monosaccharide structural isomers including sixteen methyl-D-glycopyranosides and four methyl-N-acetylhexosamines were subjected to ion mobility measurements by electrospray ion mobility mass spectrometry. Two ion mobility-MS systems were employed: atmospheric pressure drift tube ion mobility time-of-flight mass spectrometry and a Synapt G2 HDMS system which incorporates a low pressure traveling wave ion mobility separator. All the compounds were investigated as [M + Na](+) ions in the positive mode. A majority of the monosaccharide structural isomers exhibited different mobility drift times in either system, depending on differences in their anomeric and stereochemical configurations. In general, drift time patterns (relative drift times of isomers) matched between the two instruments. Higher resolving power was observed using the atmospheric pressure drift tube. Collision cross section values of monosaccharide structural isomers were directly calculated from the atmospheric pressure ion mobility experiments, and a collision cross section calibration curve was made for the traveling wave ion mobility instrument. Overall, it was demonstrated that ion mobility-mass spectrometry using either drift tube or traveling wave ion mobility is a valuable technique for resolving subtle variations in stereochemistry among the sodium adducts of monosaccharide methyl glycosides.


Asunto(s)
Glicósidos/química , Espectrometría de Masas/métodos , Monosacáridos/química , Presión Atmosférica , Isomerismo , Factores de Tiempo
7.
Phys Chem Chem Phys ; 14(18): 6179-91, 2012 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-22245978

RESUMEN

A combination of two-dimensional infrared (2DIR) correlation spectroscopy, linear absorption spectroscopy, and density functional theory quantum calculations was used to identify characteristic spectral features of two anomers of acetylated 2-azido-2-deoxy-D-glucopyranose. While the linear absorption spectra for the α and ß anomers were distinctive, a substantial difference between them was observed only in the spectral region below 1200 cm(-1). The infrared correlation spectra of the two anomers differed significantly, even in regions where their linear absorption spectra were similar. Very substantial differences were found for the N≡N/C=O stretch mode region of the 2DIR correlation spectrum, indicating differences in the anharmonic coupling of the N≡N stretching mode of the equatorially oriented N(3) group with the CO modes when the C(1) ester was either in the axial (α anomer) or equatorial (ß anomer) orientation. In addition, the energy transport patterns originating from the excited N≡N stretching mode were found to be different for the two anomers; up to a 1.8-fold difference in the energy transport times was observed for the probed modes of the same type in the two anomers. The results demonstrate the capability of 2DIR and relaxation-assisted 2DIR (RA 2DIR) spectroscopies to provide unique spectroscopic data specific to sugar anomers that vary at a single stereochemical center. These methods identify unique coupling networks within individual sugar stereochemical units and demonstrate the potential to identify a number of stereochemical differences among them.


Asunto(s)
Glucósidos/química , Análisis Espectral , Vibración , Absorción , Acetilación , Azidas/química , Estereoisomerismo
8.
Biochemistry ; 50(10): 1700-13, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21247092

RESUMEN

The social amoeba Dictyostelium expresses a hypoxia inducible factor-α (HIFα) type prolyl 4-hydroxylase (P4H1) and an α-N-acetylglucosaminyltransferase (Gnt1) that sequentially modify proline-143 of Skp1, a subunit of the SCF (Skp1/Cullin/F-box protein) class of E3 ubiquitin ligases. Prior genetic studies have implicated Skp1 and its modification by these enzymes in O(2) regulation of development, suggesting the existence of an ancient O(2)-sensing mechanism related to modification of the transcription factor HIFα by animal prolyl 4-hydroxylases (PHDs). To better understand the role of Skp1 in P4H1-dependent O(2) signaling, biochemical and biophysical studies were conducted to characterize the reaction product and the basis of Skp1 substrate selection by P4H1 and Gnt1. (1)H NMR demonstrated formation of 4(trans)-hydroxyproline as previously found for HIFα, and highly purified P4H1 was inhibited by Krebs cycle intermediates and other compounds that affect animal P4Hs. However, in contrast to hydroxylation of HIFα by PHDs, P4H1 depended on features of full-length Skp1, based on truncation, mutagenesis, and competitive inhibition studies. These features are conserved during animal evolution, as even mammalian Skp1, which lacks the target proline, became a good substrate upon its restoration. P4H1 recognition may depend on features conserved for SCF complex formation as heterodimerization with an F-box protein blocked Skp1 hydroxylation. The hydroxyproline-capping enzyme Gnt1 exhibited similar requirements for Skp1 as a substrate. These and other findings support a model in which the protist P4H1 conditionally hydroxylates Skp1 of E3(SCF)ubiquitin ligases to control half-lives of multiple targets, rather than the mechanism of animal PHDs where individual proteins are hydroxylated leading to ubiquitination by the evolutionarily related E3(VBC)ubiquitin ligases.


Asunto(s)
Citosol/enzimología , Dictyostelium/enzimología , N-Acetilglucosaminiltransferasas/metabolismo , Oxígeno/metabolismo , Procolágeno-Prolina Dioxigenasa/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Transducción de Señal , Animales , Modelos Moleculares , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Ligasas SKP Cullina F-box/química , Especificidad por Sustrato
9.
Anal Chem ; 83(22): 8468-76, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21954928

RESUMEN

Data mining algorithms have been used to analyze the infrared multiple photon dissociation (IRMPD) patterns of gas-phase lithiated disaccharide isomers irradiated with either a line-tunable CO(2) laser or a free electron laser (FEL). The IR fragmentation patterns over the wavelength range of 9.2-10.6 µm have been shown in earlier work to correlate uniquely with the asymmetry at the anomeric carbon in each disaccharide. Application of data mining approaches for data analysis allowed unambiguous determination of the anomeric carbon configurations for each disaccharide isomer pair using fragmentation data at a single wavelength. In addition, the linkage positions were easily assigned. This combination of wavelength-selective IRMPD and data mining offers a powerful and convenient tool for differentiation of structurally closely related isomers, including those of gas-phase carbohydrate complexes.


Asunto(s)
Minería de Datos , Disacáridos/análisis , Disacáridos/química , Glucosa/análisis , Glucosa/química , Espectrometría de Masas/métodos , Iones/análisis , Isomerismo
10.
Anal Bioanal Chem ; 394(7): 1853-67, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19562326

RESUMEN

The rapid separation of isomeric precursor ions of oligosaccharides prior to their analysis by mass spectrometry to the nth power (MS(n)) was demonstrated using an ambient pressure ion mobility spectrometer (IMS) interfaced with a quadrupole ion trap. Separations were not limited to specific types of isomers; representative isomers differing solely in the stereochemistry of sugars, in their anomeric configurations, and in their overall branching patterns and linkage positions could be resolved in the millisecond time frame. Physical separation of precursor ions permitted independent mass spectra of individual oligosaccharide isomers to be acquired to at least MS(3), the number of stages of dissociation limited only practically by the abundance of specific product ions. IMS-MS(n) analysis was particularly valuable in the evaluation of isomeric oligosaccharides that yielded identical sets of product ions in tandem mass spectrometry experiments, revealing pairs of isomers that would otherwise not be known to be present in a mixture if evaluated solely by MS dissociation methods alone. A practical example of IMS-MS(n) analysis of a set of isomers included within a single high-performance liquid chromatography fraction of oligosaccharides released from bovine submaxillary mucin is described.


Asunto(s)
Oligosacáridos/análisis , Espectrometría de Masa por Ionización de Electrospray/métodos , Animales , Bovinos , Iones/análisis , Isomerismo , Espectrometría de Masa por Ionización de Electrospray/instrumentación , Factores de Tiempo
11.
J Am Soc Mass Spectrom ; 29(8): 1638-1649, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29802562

RESUMEN

Adduction of multivalent metal ions to glycans has been shown in recent years to produce altered tandem mass spectra with collision-induced dissociation, electron transfer techniques, and photon-based fragmentation approaches. However, these approaches assume the presence of a well-characterized precursor ion population and do not fully account for the possibility of multimeric species for select glycan-metal complexes. With the use of ion mobility separations prior to mass analysis, doubly charged dimers are not necessarily problematic for tandem MS experiments given that monomer and dimer drift times are sufficiently different. However, multistage mass spectrometric experiments performed on glycans adducted to multivalent metals without mobility separation can yield chimeric fragmentation spectra that are essentially a superposition of the fragments from both the monomeric and dimeric adducts. For homodimeric adducts, where the dimer contains two of the same glycan species, this is less of a concern but if heterodimers can form, there exists the potential for erroneous and misleading fragment ions to appear if a heterodimer containing two different isomers is fragmented along with a targeted monomer. We present an assessment of heterodimer formation between a series of six tetrasaccharides, of which three are isomers, adducted with cobalt(II) and a monodeuterated tetrasaccharide. Using ion mobility separations prior to single-stage and tandem mass analysis, the data shown demonstrate that heterodimeric species can indeed form, and that ion mobility separations are highly necessary prior to using tandem techniques on metal-glycan adducts. Graphical Abstract ᅟ.

12.
J Am Soc Mass Spectrom ; 18(7): 1163-75, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17532226

RESUMEN

Carbohydrates are an extremely complex group of isomeric molecules that have been difficult to analyze in the gas phase by mass spectrometry because (1) precursor ions and product ions to successive stages of MS(n) are frequently mixtures of isomers, and (2) detailed information about the anomeric configuration and location of specific stereochemical variants of monosaccharides within larger molecules has not been possible to obtain in a general way. Herein, it is demonstrated that gas-phase analyses by direct combination of electrospray ionization, ambient pressure ion mobility spectrometry, and time-of-flight mass spectrometry (ESI-APIMS-TOFMS) provides sufficient resolution to separate different anomeric methyl glycosides and to separate different stereoisomeric methyl glycosides having the same anomeric configuration. Reducing sugars were typically resolved into more than one peak, which might represent separation of cyclic species having different anomeric configurations and/or ring forms. The extent of separation, both with methyl glycosides and reducing sugars, was significantly affected by the nature of the drift gas and by the nature of an adducting metal ion or ion complex. The study demonstrated that ESI-APIMS-TOFMS is a rapid and effective analytical technique for the separation of isomeric methyl glycosides and simple sugars, and can be used to differentiate glycosides having different anomeric configurations.


Asunto(s)
Carbohidratos/química , Espectrometría de Masa por Ionización de Electrospray/instrumentación , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/instrumentación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Presión Atmosférica , Carbohidratos/análisis , Sistemas de Computación , Diseño de Equipo , Análisis de Falla de Equipo , Isomerismo , Sensibilidad y Especificidad
13.
Carbohydr Res ; 342(2): 217-35, 2007 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-17184755

RESUMEN

Mass spectrometry of disaccharides in the negative-ion mode frequently generates product anions of m/z 221. With glucose-containing disaccharides, dissociation of isolated m/z 221 product ions in a Paul trap yielded mass spectra that easily differentiated between both anomeric configurations and ring forms of the ions. These ions were shown to be glucosyl-glycolaldehydes through chemical synthesis of their standards. By labeling the reducing carbonyl oxygen of disaccharides with 18O to mass discriminate between monosaccharides, it was established that the m/z 221 ions are comprised solely of an intact nonreducing sugar with a two-carbon aglycon derived from the reducing sugar, regardless of the disaccharide linkage position. This enabled the anomeric configuration and ring form of the ion to be assigned and the location of the ion to the nonreducing side of a glycosidic linkage to be ascertained. Detailed studies of experimental factors necessary for reproducibility in a Paul trap demonstrated that the unique dissociation patterns that discriminate between the isomeric m/z 221 ions could be obtained from month-to-month in conjunction with an internal energy-input calibrant ion that ensures reproducible energy deposition into isolated m/z 221 ions. In addition, MS/MS fragmentation patterns of disaccharide m/z 341 anions in a Paul trap enabled linkage positions to be assigned, as has been previously reported with other types of mass spectrometers.


Asunto(s)
Acetaldehído/análogos & derivados , Aniones/química , Disacáridos/química , Espectrometría de Masas/métodos , Acetaldehído/química , Aniones/síntesis química , Aniones/normas , Conformación de Carbohidratos , Secuencia de Carbohidratos , Isomerismo , Datos de Secuencia Molecular , Estructura Molecular , Peso Molecular , Estándares de Referencia , Reproducibilidad de los Resultados
14.
J Am Soc Mass Spectrom ; 28(4): 664-677, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27796835

RESUMEN

Using five isomeric tetrasaccharides in combination with seven multivalent metals, the impact on mobility separations and resulting CID spectra were examined using a hybrid ion mobility atmospheric pressure drift tube system coupled with a linear ion trap. By enhancing the duty cycle of the drift tube system using a linearly chirped frequency, the collision-induced dissociation spectra were encoded in the mobility domain according to the drift times of each glycan isomer precursor. Differential fragmentation patterns correlated with precursor drift times ensured direct assignment of fragments with precursor structure whether as individual standards or in a mixture of isomers. In addition to certain metal ions providing higher degrees of separation than others, in select cases more than one arrival time distribution was observed for a single pure carbohydrate isomer. These observations suggest the existence of alternative coordination sites within a single monomeric species, but more interesting was the observation of different fragmentation ion yields for carbohydrate dimers formed through metal adduction. Positive-ion data were also compared with negative-ion species, where dimer formation did not occur and single peaks were observed for each isomeric tetrasaccharide-alditol. This enhanced analytical power has implications not only for carbohydrate molecules but also for a wide variety of complex mixtures of molecules where dissociation spectra may potentially be derived from combinations of monomeric, homodimeric, and heterodimeric species having identical nominal m/z values. Graphical Abstract ᅟ.

15.
J Magn Reson ; 181(1): 79-88, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16621633

RESUMEN

Four-dimensional nuclear magnetic resonance spectroscopy of oligosaccharides that correlates 1H-1H ROESY cross peaks to two additional 13C frequency dimensions is reported. The 13C frequencies were introduced by derivatization of all free hydroxyl groups with doubly 13C-labeled acetyl isotags. Pulse sequences were optimized for processing with the filter diagonalization method. The extensive overlap typically observed in 2D ROESY 1H-1H planes was alleviated by resolution of ROESY cross peaks in the two added dimensions associated with the carbon frequencies of the isotags. This enabled the interresidue 1H-1H ROESY cross peaks to be unambiguously assigned hence spatially proximate sugar spin systems across glycosidic bonds could be effectively ascertained. An experiment that selectively amplifies interresidue ROESY 1H-1H cross peaks is also reported. It moves the magnetization of an intraresidue proton normally correlated to a sugar H-1 signal orthogonally along the z axis prior to a Tr-ROESY mixing sequence. This virtually eliminates the incoherent intraresidue ROESY transfer, suppresses coherent TOCSY transfer, and markedly enhances the intensity of interresidue ROESY cross peaks.


Asunto(s)
Glucanos/química , Resonancia Magnética Nuclear Biomolecular/métodos , Oligosacáridos/química , Isótopos de Carbono , Estructura Molecular , Procesamiento de Señales Asistido por Computador
16.
J Am Soc Mass Spectrom ; 16(5): 660-9, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15862767

RESUMEN

A series of isobaric disaccharide-alditols, four derived from O-linked glycoproteins, and select trisaccharides were rapidly resolved using tandem high resolution atmospheric pressure ion-mobility time-of-flight mass spectrometry. Electrospray ionization was used to create the gas-phase sodium adducts of each carbohydrate. Using this technique it was possible to separate up to three isobaric disaccharide alditols and three trisaccharides in the gas phase. Reduced mobility values and experimentally determined ion-neutral cross sections are reported for each sodium-carbohydrate complex. These studies demonstrated that ion mobility separations at atmospheric pressure can provide a high-resolution dimension for analysis of carbohydrate ions that is complementary to traditional mass spectral (m/z) ion analysis. Combining these independent principles for separation of ions provides a powerful new bioanalytical tool for the identification of isomeric carbohydrates.


Asunto(s)
Disacáridos/análisis , Disacáridos/química , Sodio/análisis , Sodio/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Trisacáridos/análisis , Trisacáridos/química , Presión
17.
J Magn Reson ; 174(1): 163-70, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15809183

RESUMEN

A new way to apply the filter diagonalization method (FDM) that results in a large increase in the speed of calculation of multidimensional NMR spectra is presented. The speed increase is accompanied by slight differences in spectral lineshapes, although frequency estimates remain essentially identical. For contoured spectra, the method does not result in appreciable differences from the full FDM calculation. Optimal parameter sets for an FDM calculation can be estimated far more rapidly, which makes the FDM more straightforward to employ in practice. The performance of the method versus the full FDM was investigated for both model and experimental signals. The effect of noise on the method was also studied.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Oligosacáridos/química , Algoritmos , Isótopos de Carbono , Procesamiento de Señales Asistido por Computador
18.
J Magn Reson ; 173(1): 160-8, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15705524

RESUMEN

Four-dimensional nuclear magnetic resonance spectroscopy with high resolution of signals in the indirect dimensions is reported as an implementation of the filter diagonalization method (FDM). Using an oligosaccharide derivatized with 13C-labeled acetyl isotags, a four-dimensional constant-time pulse sequence was tailored for conjoint use with the FDM. Results demonstrate that high resolution in all dimensions can be achieved using a relatively short experimental time period (19 h), even though the spectrum is highly congested in the direct and all three indirect dimensions. The combined use of isotags, constant-time pulse sequences, and FDM permits rapid isolation of sugar ring proton spin systems in multiple dimensions and enables all endocyclic J-couplings to be simply measured, the key goal to assigning sugar stereochemistry and anomeric configuration. A general method for rapid, unambiguous elucidation of spin systems in oligosaccharides has been a long-sought goal of carbohydrate NMR, and isotags combined with the FDM now enable this to be easily performed. Additional general advantages of the FDM program for generating high-resolution 2D slices in any dimension from a 4D spectrum are emphasized.


Asunto(s)
Glucanos/química , Resonancia Magnética Nuclear Biomolecular/métodos , Oligosacáridos/química , Isótopos de Carbono , Estructura Molecular , Procesamiento de Señales Asistido por Computador
19.
J Phys Chem B ; 119(41): 12970-81, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26393375

RESUMEN

Four isomeric sugar methylglycosides (α- and ß-d-gluco- and galactopyranosides) were evaluated as rubidium cation coordination adducts in the gas phase using variable-wavelength multiple-photon dissociation in the range from 2750 to 3750 cm(-1). The adducts dissociated following photon absorption to yield neutral sugars and the rubidium cation, resulting in infrared "action" spectra. Well-resolved hydroxyl stretching bands clearly differentiate stereoisomers that vary solely in their asymmetry at single carbons. Density functional theory calculations of the lowest-energy gas-phase complexes indicate that rubidium coordinates with lone pairs of oxygen atoms as either bi- or tridentate complexes and that more than one positional coordination isomer could adequately account for most of the O-H stretch frequencies observed for each methylglycoside.


Asunto(s)
Glicósidos/química , Rubidio/química , Espectrofotometría Infrarroja/métodos , Carbono/química , Hidrógeno/química , Oxígeno/química , Fotones , Estereoisomerismo , Termodinámica
20.
J Magn Reson ; 170(1): 156-63, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15324769

RESUMEN

Rapid 3D NMR spectroscopy of oligosaccharides having isotopically labeled acetyl "isotags" was made possible with high resolution in the indirect dimensions using the filter diagonalization method (FDM). A pulse sequence was designed for the optimal correlation of acetyl methyl protons, methyl carbons, and carbonyl carbons. The multi-dimensional nature of the FDM, coupled with the advantages of constant-time evolution periods, resulted in marked improvements over Fourier transform (FT) and mirror-image linear prediction (MI-LP) processing methods. The three methods were directly compared using identical data sets. A highly resolved 3D spectrum was achieved with the FDM using a very short experimental time (28 min).


Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos , Oligosacáridos/química , Modelos Teóricos , Procesamiento de Señales Asistido por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA