Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Planta ; 259(1): 25, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38108922

RESUMEN

MAIN CONCLUSION: Xanthoria parietina survivability in Mars-like conditions was supported by water-lysis efficiency recovery and antioxidant content balancing with ROS production after 30 days of exposure. Xanthoria parietina (L.) Th. Fr. is a widespread lichen showing tolerance against air pollutants and UV-radiation. It has been tested under space-like and Mars-like conditions resulting in high recovery performances. Hereby, we aim to assess the mechanisms at the basis of the thalli resilience against multiple space stress factors. Living thalli of X. parietina were exposed to simulated Martian atmospheric conditions (Dark Mars) and UV radiation (Full Mars). Then, we monitored as vitality indicator the photosynthetic efficiency, assessed by in vivo chlorophyll emission fluorescence measurements (FM; FV/F0). The physiological defense was evaluated by analyzing the thalli antioxidant capacity. The drop of FM and FV/F0 immediately after the exposure indicated a reduction of photosynthesis. After 24 h from exposure, photosynthetic efficiency began to recover suggesting the occurrence of protective mechanisms. Antioxidant concentrations were higher during the exposure, only decreasing after 30 days. The recovery of photosynthetic efficiency in both treatments suggested a strong resilience by the photosynthetic apparatus against combined space stress factors, likely due to the boosted antioxidants at the beginning and their depletion at the end of the exposure. The overall results indicated that the production of antioxidants, along with the occurrence of photoprotection mechanisms, guarantee X. parietina survivability in Mars-like environment.


Asunto(s)
Marte , Resiliencia Psicológica , Antioxidantes , Medio Ambiente Extraterrestre , Estrés Oxidativo , Fotosíntesis
2.
Environ Monit Assess ; 191(5): 260, 2019 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-30949767

RESUMEN

In bioaccumulation studies, the interpretation of pollutant contents in the target biomonitor has to be performed by assessing a deviation from an unaltered reference condition. A common strategy consists in the comparison with background element content (BEC) values, often built up by uncritically merging methodologically heterogeneous data. In this respect, the acid digestion of samples was identified as a major step affecting BEC data. Here, the analytical outcomes of two acid mixtures were compared on a set of matched paired samples of the lichen Pseudevernia furfuracea, a widely used biomonitor for which BEC values based on partial digestion were previously provided. The standard reference material BCR 482 (P. furfuracea) was used to validate analytical procedures consisting of either a HF total mineralization or an aqua regia partial one, both associated to ICP-MS multi-element analysis. In particular, the performance of the procedures was evaluated by comparing analytical results of field samples with the accuracy obtained on BCR aliquots (measured-to-expected percentage ratio). The total digestion showed a better performance for Al, As, Ba, Ca, Cd, Cu, Fe, Mn, Ni, Se, Sn, and Zn, whereas the opposite was found for Cr, Co, P, and S. Moreover, new BEC values were provided for P. furfuracea using a consolidated statistical approach, after a total sample digestion with hydrofluoric acid. The multivariate investigation of the background variability of 43 elements in 57 remote Italian sites led to the identification of geographically homogeneous areas for which BEC values are provided for use as reference in biomonitoring applications.


Asunto(s)
Contaminantes Ambientales/análisis , Ácido Clorhídrico/análisis , Líquenes/metabolismo , Ácido Nítrico/análisis , Oligoelementos/análisis , Monitoreo del Ambiente , Italia
3.
Life Sci Space Res (Amst) ; 41: 191-201, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38670647

RESUMEN

The cortical anthraquinone yellow-orange pigment parietin is a secondary lichen substance providing UV-shielding properties that is produced by several lichen species. In our work, the secondary metabolite has been extracted from air-dried thalli of Xanthoria parietina. The aims of this study were to characterize parietin absorbance through UV-VIS spectrophotometry and with IR spectroscopy and to evaluate its photodegradability under UV radiation through in situ reflectance IR spectroscopy to understand to what extent the substance may have a photoprotective role. This allows us to relate parietin photo-degradability to the lichen UV tolerance in its natural terrestrial habitat and in extreme environments relevant for astrobiology such as Mars. Extracted crystals were UV irradiated for 5.59 h under N2 flux. After the UV irradiation, we assessed relevant degradations in the 1614, 1227, 1202, 1160 and 755 cm-1 bands. However, in light of Xanthoria parietina survivability in extreme conditions such as space- and Mars-simulated ones, we highlight parietin UV photo-resistance and its relevance for astrobiology as photo-protective substance and possible bio-hint.


Asunto(s)
Emodina/análogos & derivados , Exobiología , Líquenes , Rayos Ultravioleta , Líquenes/efectos de la radiación , Líquenes/química , Fotólisis , Espectrofotometría Infrarroja
4.
Environ Manage ; 52(4): 939-45, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23700269

RESUMEN

In Europe, coastal dune systems with Juniperus spp. (Natura 2000 habitat code 2250) are a priority habitat for conservation according to the Natura 2000 policies. Currently, anthropogenic pressure is threatening the biodiversity of this habitat. While the impact of human pressure on animals and vascular plants is already documented, information is still scanty for other organisms such as epiphytic lichens. The main aim of this study is to test the effect of human disturbance on the occurrence and abundance of the red-listed macrolichen Seirophora villosa. We also tested the effect of human disturbance on the whole community of epiphytic lichens in terms of species richness and composition. The study was performed along the coast of Tuscany by comparing both disturbed and undisturbed Juniperus stands according to a stratified random sampling design. Our results provided evidence that in coastal systems the long-term conservation of the red-listed macrolichen S. villosa and its characteristic community composed by several Mediterranean species of conservation concern depends on the maintenance of undisturbed Juniperus habitats. Results also support the possibility of using S. villosa as an indicator species of habitat conservation importance and habitat integrity since its occurrence is predicted on nestedness in term of species composition, assemblages of species poor disturbed stands being subsets of those of richer undisturbed stands.


Asunto(s)
Especies en Peligro de Extinción , Juniperus , Líquenes , Conservación de los Recursos Naturales , Humanos , Italia
5.
Environ Sci Pollut Res Int ; 30(59): 124232-124244, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37999838

RESUMEN

Biomonitoring studies are often employed to track airborne pollutants both in outdoor and indoor environments. In this study, the mercury (Hg) sorption by three biomonitors, i.e., Pinus nigra bark, Pseudovernia furfuracea lichen, and Hypnum cupressiforme moss, was investigated in controlled (indoor) conditions. In comparison to outdoor environments, controlled conditions offer the opportunity to investigate more in detail the variables (humidity, temperature, pollutants speciation, etc.) that control Hg uptake. The biomonitors were exposed in two distinct periods of the year for 2 and 12 months respectively, in the halls of the Central Italian Herbarium (Natural History Museum of the University of Florence, Italy), which are polluted by Hg, due to past plant sample treatments. The Hg sorption trend was monitored every 3 weeks by recording: (i) the Hg content in the substrata, (ii) gaseous elemental mercury (GEM) concentrations in the exposition halls, (iii) temperature, (iv) humidity, and (v) particulate matter (PM) concentrations. At the end of the experiment, Hg concentrations in the biomonitors range from 1130 ± 201 to 293 ± 45 µg kg-1 (max-min) in barks, from 3470 ± 571 to 648 ± 40 µg kg-1 in lichens, and from 3052 ± 483 to 750 ± 127 µg kg-1 in mosses. All the biomonitors showed the highest Hg accumulation after the first 3 weeks of exposure. Mercury concentrations increased over time showing a continuous accumulation during the experiments. The biomonitors demonstrated different Hg accumulation trends in response to GEM concentrations and to the different climatic conditions (temperature and humidity) of the Herbarium halls. Barks strictly reflected the gaseous Hg pollution, while lichen and moss accumulation was also influenced by the climatic conditions of the indoor environment. Mercury bound to PM seemed to provide a negligible contribution to the biomonitors final uptake.


Asunto(s)
Contaminantes Atmosféricos , Briófitas , Contaminantes Ambientales , Líquenes , Mercurio , Mercurio/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Material Particulado , Italia
6.
Sci Rep ; 13(1): 4893, 2023 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-36966209

RESUMEN

Xanthoria parietina (L.) Th. Fr. is a widely spread foliose lichen showing high tolerance against UV-radiation thanks to parietin, a secondary lichen substance. We exposed samples of X. parietina under simulated Martian conditions for 30 days to explore its survivability. The lichen's vitality was monitored via chlorophyll a fluorescence that gives an indication for active light reaction of photosynthesis, performing in situ and after-treatment analyses. Raman spectroscopy and TEM were used to evaluate carotenoid preservation and possible variations in the photobiont's ultrastructure respectively. Significant differences in the photo-efficiency between UV irradiated samples and dark-kept samples were observed. Fluorescence values correlated with temperature and humidity day-night cycles. The photo-efficiency recovery showed that UV irradiation caused significant effects on the photosynthetic light reaction. Raman spectroscopy showed that the carotenoid signal from UV exposed samples decreased significantly after the exposure. TEM observations confirmed that UV exposed samples were the most affected by the treatment, showing chloroplastidial disorganization in photobionts' cells. Overall, X. parietina was able to survive the simulated Mars conditions, and for this reason it may be considered as a candidate for space long-term space exposure and evaluations of the parietin photodegradability.


Asunto(s)
Líquenes , Marte , Clorofila A , Medio Ambiente Extraterrestre , Carotenoides
7.
Sci Total Environ ; 825: 153943, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35189219

RESUMEN

Climate change is already causing considerable reductions in biodiversity in all terrestrial ecosystems. These consequences are expected to be exacerbated in biomes that are particularly exposed to change, such as those in the Mediterranean, and in certain groups of more sensitive organisms, such as epiphytic lichens. These poikylohydric organisms find suitable light and water conditions on trunks under the tree canopy. Despite their small size, epiphytic communities contribute significantly to the functionality of forest ecosystems. In this work, we surveyed epiphytic lichen communities in a Mediterranean area (Sardinia, Italy) and hypothesized that 1) the effect of microclimate on lichens at tree scale is mediated by the functional traits of these organisms and that 2) micro-refuge trees with certain morphological characteristics can mitigate the negative effects of future climate change. Results confirm the first hypothesis, while the second is only partially supported, suggesting that the capability of specific trees to host specific conditions may not be sufficient to maintain the diversity and ecosystem functionality of lichen communities in the Mediterranean.


Asunto(s)
Líquenes , Biodiversidad , Cambio Climático , Ecosistema , Bosques , Árboles
8.
Plants (Basel) ; 11(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36297826

RESUMEN

Carpobrotus acinaciformis and C. edulis are well-known invasive alien plants native to South Africa, whose detrimental effects on native communities are widely documented in the Mediterranean basin and thus largely managed in coastal ecosystems. Most of the literature on these species focuses on their impacts on habitats of sandy coastal dunes, while the effects of Carpobrotus spp. invasion on other habitats such as rocky cliffs and coastal scrubs and garrigues are almost neglected. We present a study case conducted on a small Mediterranean island where Carpobrotus spp. invaded three different natural habitats listed within the Habitat Directive 92/43/CEE (Natura 2000 codes 1240, 1430, and 5320). We surveyed the presence and abundance of native species and Carpobrotus spp. on 44 permanent square plots of 4 m2 in invaded and uninvaded areas in each of the three habitats. We found impacts on plant alpha diversity (intended as the species diversity within each sampled plot) in all the habitats investigated in terms of a decrease in species richness, Shannon index, and abundance. Invaded communities also showed a severe change in species composition with a strong homogenization of the floras of the three habitats. Finally, the negative effect of invasion emerged even through the analyses of beta diversity (expressing the species diversity among sampled plots of the same habitat type), with Carpobrotus spp. replacing a large set of native species.

9.
Plants (Basel) ; 11(3)2022 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-35161276

RESUMEN

Microclimatic conditions are important in determining lichen distribution at small scale, and may determine whether the species persist when the surrounding environmental conditions have drastically changed. This is the case with forest management, since a sudden variation of microclimatic conditions (increase of solar radiation, temperature, wind and a reduction of humidity) may occur after logging. In this study, the combined effect of forest logging and microclimatic conditions on the growth probabilities and growth rates of the model species Lobaria pulmonaria was assessed in mixed oak stands. To this purpose, 800 fragments of L. pulmonaria (<1 cm) were transplanted in logged and unlogged stands for two years. Young and adult fragments were positioned on Turkey oak boles according to distance from the ground (100 and 50 cm) and aspect (north and south). The results, evaluated by generalized linear mixed models on a yearly basis, highlighted differences in growth-particularly on isolated trees in the logged stand. South-exposed samples in the logged stand showed a low probability of growth, while samples transplanted north in the unlogged stand showed higher growth probabilities. However, the highest annual growth coefficients corresponded to south-exposed samples 50 cm from the ground in the unlogged stand. In general, higher growth rates were observed in young thallus fragments when compared with adult ones. Beyond confirming the importance of microclimate for lichen ecology, these results could be implemented in conservation actions to preserve L. pulmonaria populations in logged forests.

10.
Microorganisms ; 9(2)2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-33671558

RESUMEN

Terricolous lichen communities in lowlands occur especially in open dry habitats. Such communities are often dominated by species of the genus Cladonia, which are very variable in morphology, reproduction strategies, and secondary metabolites. In this work, we investigated traits-environment relationships considering vegetation dynamics, substrate pH, disturbance, and climate. A total of 122 plots were surveyed in 41 acidic dry grasslands in the western Po Plain (Northern Italy). Relationships between Cladonia traits and environmental variables were investigated by means of a model-based Fourth Corner Analysis. Thallus morphology and metabolites responded to vegetation dynamics, substrate pH, disturbance, and climate, whereas reproduction strategies responded only to vegetation dynamics. Traits' correlations with vegetation dynamics elucidate their colonization patterns in open dry habitats or suggest biotic interactions with bryophytes and vascular plants. In addition, correlations between metabolites and environmental factors support interpretations of their ecological roles. Our results also stress the importance of studying traits' relationships with climatic factors as an alert towards lichen reactions to climate change.

11.
MycoKeys ; 78: 119-168, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33854403

RESUMEN

The botanical exploration of the Majella National Park has a long tradition dating back to the eighteenth century. However, the lichen biota of this area is still poorly investigated. To provide a baseline for future investigations, in this annotated checklist, we summarised all available information on the occurrence of lichens in the Majella National Park, retrieved from previous literature, herbarium material and original data produced by recent research. The checklist includes 342 infrageneric taxa. However, seven taxa are considered as dubious, thus setting the number of accepted taxa at 335, i.e. 45.8% of those currently known to occur in the Abruzzo Region. This checklist provides a baseline of the lichens known to occur in the Majella National Park, highlighting the potential of this area as a hotspot of lichen biodiversity, especially from a biogeographical point of view as indicated by the occurrence of several arctic-alpine species that form disjunct populations in the summit area of the massif.

12.
Sci Rep ; 11(1): 4438, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33627718

RESUMEN

We explored the influence of climatic factors on diversity patterns of multiple taxa (lichens, bryophytes, and vascular plants) along a steep elevational gradient to predict communities' dynamics under future climate change scenarios in Mediterranean regions. We analysed (1) species richness patterns in terms of heat-adapted, intermediate, and cold-adapted species; (2) pairwise beta-diversity patterns, also accounting for its two different components, species replacement and richness difference; (3) the influence of climatic variables on species functional traits. Species richness is influenced by different factors between three taxonomic groups, while beta diversity differs mainly between plants and cryptogams. Functional traits are influenced by different factors in each taxonomic group. On the basis of our observations, poikilohydric cryptogams could be more impacted by climate change than vascular plants. However, contrasting species-climate and traits-climate relationships were also found between lichens and bryophytes suggesting that each group may be sensitive to different components of climate change. Our study supports the usefulness of a multi-taxon approach coupled with a species traits analysis to better unravel the response of terrestrial communities to climate change. This would be especially relevant for lichens and bryophytes, whose response to climate change is still poorly explored.

13.
Microorganisms ; 9(4)2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33917569

RESUMEN

Community ecology has experienced a major transition, from a focus on patterns in taxonomic composition, to revealing the processes underlying community assembly through the analysis of species functional traits. The power of the functional trait approach is its generality, predictive capacity such as with respect to environmental change, and, through linkage of response and effect traits, the synthesis of community assembly with ecosystem function and services. Lichens are a potentially rich source of information about how traits govern community structure and function, thereby creating opportunity to better integrate lichens into 'mainstream' ecological studies, while lichen ecology and conservation can also benefit from using the trait approach as an investigative tool. This paper brings together a range of author perspectives to review the use of traits in lichenology, particularly with respect to European ecosystems from the Mediterranean to the Arctic-Alpine. It emphasizes the types of traits that lichenologists have used in their studies, both response and effect, the bundling of traits towards the evolution of life-history strategies, and the critical importance of scale (both spatial and temporal) in functional trait ecology.

14.
Sci Total Environ ; 735: 139537, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32485454

RESUMEN

While changing climatic conditions may directly impact species distribution ranges, indirect effects related to altered biotic interactions may exacerbate range shifts. This situation fully applies to epiphytic lichens that are sensitive to climatic factors and strongly depend on substrate occurrence and features for their dispersal and establishment. In this work, we modelled the climatic suitability across Italy under current and future climate of the forest species Lobaria pulmonaria, the lung lichen. Comparatively, we modelled the suitability of its main tree species in Italy, as well as that of the alien tree Robinia pseudoacacia, black locust, whose spread may cause the decline of many forest lichen species. Our results support the view that climate change may cause range shifts of epiphytes by altering the spatial pattern of their climatic suitability (direct effect) and simultaneously causing range shifts of their host-tree species (indirect effect). This phenomenon seems to be emphasized by the invasion of alien trees, as in the case of black locust, that may replace native host tree species. Results indicate that a reduction of the habitat suitability of the lung lichen across Italy should be expected in the face of climate change and that this is coupled with a loss of suitable substrate. This situation seems to be determined by two main processes that act simultaneously: 1) a partial reduction of the spatial overlap between the climatic niche of the lung lichen and that of its host tree species, and 2) the invasion of native woods by black locust. The case of lung lichen and black locust in Italy highlights that epiphytes are prone to both direct and indirect effects of climate change. The invasion of alien trees may have consequences that are still poorly evaluated for epiphytes.


Asunto(s)
Líquenes , Robinia , Cambio Climático , Ecosistema , Italia , Árboles
15.
PeerJ ; 8: e8683, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32201641

RESUMEN

We studied the secondary succession in semi-natural grasslands (dry grasslands and hay meadows) located in the eastern side of the Tuscan Apennines (Tuscany, Central Italy). We compared these habitats, investigating: (i) the changes in species richness, composition and phylogenetic diversity during the succession; (ii) whether the trends in species loss and species turnover in taxonomic diversity matched those in phylogenetic diversity. We performed a stratified random sampling, in a full factorial design between habitat type and succession stage (60 sampled plots, 10 × 2 types of habitat × 3 stages of succession). We constructed a phylogenetic tree of the plant communities and compared the differences in taxonomic/phylogenetic α- and ß-diversity between these two habitats and during their succession. We identified indicator species for each succession stage and habitat. Looking at α-diversity, both habitats displayed a decrease in species richness, with a random process of species selection in the earlier succession stages from the species regional pool. Nevertheless, in the latter stage of dry grasslands we recorded a shift towards phylogenetic overdispersion at the higher-level groups in the phylogenetic tree. In both habitats, while the richness decreased with succession stage, most species were replaced during the succession. However, the hay meadows were characterized by a higher rate of new species' ingression whereas the dry grasslands became dominated with Juniperus communis. Accordingly, the two habitats showed similar features in phylogenetic ß-diversity. The main component was true phylogenetic turnover, due to replacement of unique lineages along the succession. Nevertheless, in dry grasslands this trend is slightly higher than expected considering the major importance of difference in species richness of dry grasslands sites and this is due to the presence of a phylogenetically very distant species (J. communis).

16.
Artículo en Inglés | MEDLINE | ID: mdl-32244315

RESUMEN

In the present study, mercury (Hg) concentrations were investigated in lichens (Flavoparmelia caperata (L.) Hale, Parmelia saxatilis (L.) Ach., and Xanthoria parietina (L.) Th.Fr.) collected in the surrounding of the dismissed Abbadia San Salvatore Hg mine (Monte Amiata district, Italy). Results were integrated with Hg concentrations in tree barks and literature data of gaseous Hg levels determined by passive air samplers (PASs) in the same area. The ultimate goal was to compare results obtained by the three monitoring techniques to evaluate potential mismatches. Lichens displayed 180-3600 ng/g Hg, and Hg concentrations decreased exponentially with distance from the mine. Mercury concentration was lower than in Pinus nigra barks at the same site. There was a moderate correlation between Hg in lichen and Hg in bark, suggesting similar mechanisms of Hg uptake and residence times. However, correlation with published gaseous Hg concentrations (PASs) was moderate at best (Kendall Tau = 0.4-0.5, p > 0.05). The differences occurred because a) PASs collected gaseous Hg, whereas lichens and barks also picked up particulate Hg, and b) lichens and bark had a dynamic exchange with the atmosphere. Lichen, bark, and PAS outline different and complementary aspects of airborne Hg content and efficient monitoring programs in contaminated areas would benefit from the integration of data from different techniques.


Asunto(s)
Contaminantes Atmosféricos , Líquenes , Mercurio , Contaminantes Atmosféricos/análisis , Atmósfera , Monitoreo del Ambiente , Italia , Mercurio/análisis
17.
Microorganisms ; 8(12)2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33271812

RESUMEN

Assessing the ecological impacts of environmental change on biological communities requires knowledge of the factors driving the spatial patterns of the three diversity facets along extensive environmental gradients. We quantified the taxonomic (TD), functional (FD), and phylogenetic diversity (PD) of lichen epiphytic communities in 23 beech forests along Europe to examine their response to environmental variation (climate, habitat quality, spatial predictors) at a continental geographic scale. We selected six traits related to the climatic conditions in forest ecosystems, the water-use strategy and the nutrient uptake, and we built a phylogenetic tree based on four molecular markers. FD and climate determined TD and PD, with spatial variables also affecting PD. The three diversity facets were primarily shaped by distinct critical predictors, with the temperature diurnal range affecting FD and PD, and precipitation of the wettest month determining TD. Our results emphasize the value of FD for explaining part of TD and PD variation in lichen communities at a broad geographic scale, while highlighting that these diversity facets provide complementary information about the communities' response under changing environmental conditions. Furthermore, traits such as growth form, photobiont type, and reproductive strategy mediated the response of lichen communities to abiotic factors emerging as useful indicators of macroclimatic variations.

18.
J Environ Monit ; 11(4): 730-5, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19557222

RESUMEN

Rapid Biodiversity Assessments (RBAs) of lichen communities, obtained by means of simplified sampling lists based on morphospecies, showed good correlations with Lichen Diversity Values (LDVs), based on the complete identification of lichen species only when performed by operators with high levels of taxonomic knowledge. Furthermore, the use of highly simplified sampling lists did not lead to significant advantages in terms of time needed for field operations. This approach proved to be especially unreliable in high diversity ecological contexts where variation of morpho-structural composition within lichen communities is frequent (i.e. co-occurring crustose- and foliose-dominated communities); it may also lead to weak results if applied for conservation purposes. Hence, the use of simplified RBA sampling lists in lichen monitoring has to be carefully evaluated and, in any case, should be based on sound taxonomic knowledge on the part of those in charge of data collection. The proper assessment of descriptors of lichen abundance and/or frequency, however, strictly depends on the skill, taxonomic knowledge, and willingness to learn of the lichenologist-in-training.


Asunto(s)
Biodiversidad , Líquenes/fisiología , Conservación de los Recursos Naturales , Líquenes/clasificación , Densidad de Población , Control de Calidad
19.
Sci Total Environ ; 666: 22-30, 2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-30784819

RESUMEN

According to the insurance hypothesis, high taxonomic diversity should ensure ecosystem stability because of functional redundancy, whereas reduced functional diversity that results from species loss should affect ecosystem sensitivity, resilience, and vulnerability. However, even in species-rich ecosystems, functional over-redundancy (FOR; i.e., the tendency of most species to cluster into a few over-represented functional entities) in some cases may result in under-representation of many functions, and the ecosystem might become highly vulnerable. Using a stratified random sampling design with nested spatial levels (nine land use strata, 70 plots, 435 trees/rock outcrops, and 9845 quadrats), we recorded the occurrence of over 350 species of epiphytic and rock-dwelling lichens in semi-arid ecosystems in western Sardinia, where solar radiation defines a wide environmental gradient. By accounting for species functional traits, such as growth form, photosynthetic strategies, and reproductive strategies, we obtained 43 functional entities (>60% of all possible combinations) and tested the scale-dependency of FOR and functional vulnerability (FV, i.e., the risk of losing functional entities) by generalized linear mixed models. We found that FOR increased and FV decreased with increasing spatial scale, which supports the hypothesis of a cross-scale functional reinforcement. Decoupling of FOR and FV was far more evident for rock-dwelling compared with epiphytic communities, which reflects differing environmental conditions associated with substrate type. Our results indicate that increased warming and climatic extremes could exacerbate species clustering into the most resistant functional entities and thus enhance FOR at the community level. Therefore, high taxonomic diversity may not ensure systematic buffering of climate change impacts.


Asunto(s)
Biodiversidad , Cambio Climático , Líquenes/fisiología , Italia
20.
Plant Physiol Biochem ; 141: 398-406, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31228796

RESUMEN

The fruticose epiphytic lichen Seirophora villosa, strictly associated with Juniperus shrublands in the Mediterranean basin, was used to investigate the role of hairiness on a lichen thallus, as a characteristic morphological trait. We evaluated the effect of hair removal on the physiological parameters of a set of samples, during desiccation and on exposure to different salt concentrations. Hairy thalli were less affected by salt, suggesting that during dehydration, the presence of hair protects the thallus from light irradiance, oxidative stresses and the lipid peroxidation generated by free radicals, and could offer passive, but selective, water control. Our results showed that hair could not only increase thallus surface and promote water absorption when availability is low, but could also repel the salt dissolved in water by activating a passive resistance mechanism, by preventing salt entering.


Asunto(s)
Clorofila A/química , Líquenes/fisiología , Estrés Oxidativo , Estrés Salino , Antioxidantes/química , Carotenoides/química , Chlorophyta/fisiología , Deshidratación , Depuradores de Radicales Libres/química , Peróxido de Hidrógeno/química , Peroxidación de Lípido , Malondialdehído/química , Región Mediterránea , Fotosíntesis , Especies Reactivas de Oxígeno/química , Espectrometría de Fluorescencia , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA