Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Int J Mol Sci ; 21(18)2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32899870

RESUMEN

Skeletal muscles respond to environmental and physiological changes by varying their size, fiber type, and metabolic properties. P38 mitogen-activated protein kinase (MAPK) is one of several signaling pathways that drive the metabolic adaptation of skeletal muscle to exercise. p38 MAPK also participates in the development of pathological traits resulting from excessive caloric intake and obesity that cause metabolic syndrome and type 2 diabetes (T2D). Whereas p38 MAPK increases insulin-independent glucose uptake and oxidative metabolism in muscles during exercise, it contrastingly mediates insulin resistance and glucose intolerance during metabolic syndrome development. This article provides an overview of the apparent contradicting roles of p38 MAPK in the adaptation of skeletal muscles to exercise and to pathological conditions leading to glucose intolerance and T2D. Here, we focus on the involvement of p38 MAPK in glucose metabolism of skeletal muscle, and discuss the possibility of targeting this pathway to prevent the development of T2D.


Asunto(s)
Glucosa/metabolismo , Músculo Esquelético/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Transporte Biológico , Metabolismo de los Hidratos de Carbono , Diabetes Mellitus Tipo 2/metabolismo , Ejercicio Físico , Intolerancia a la Glucosa/metabolismo , Humanos , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Obesidad/metabolismo , Fosforilación , Transducción de Señal/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/fisiología
2.
Dev Biol ; 335(2): 374-84, 2009 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-19765572

RESUMEN

Vertebrate heart development is derived from paired primordia of anterior dorsolateral mesoderm expressing Nkx2.5 and GATA4 transcription factors. Yet growth factors and intracellular pathways specifying heart precursor gene expression are poorly understood. In the present work, we investigated the signaling events initiating Nkx2.5 expression in Xenopus laevis. We describe here that fibroblast growth factor (FGF) initiates the expression of Nkx2.5 without affecting GATA4. At gastrula, FGF3 is expressed in anterior neural ectoderm, and results presented here indicate that this tissue is involved in the induction of Nkx2.5 expression in neighboring lateral tissues. Further studies indicate that the intracellular p38 MAPK and the CREB transcription factor function downstream of FGF to initiate Nkx2.5 expression. Activation of the p38 MAPK pathway and of the CREB protein is both necessary and sufficient for the initial expression of Nkx2.5. Therefore, we would like to suggest that FGF expressed in anterior neural ectoderm is a major inducer of Nkx2.5 expression in neighboring cells. In these cells, FGF activates an intracellular p38 MAPK signaling pathway and its downstream target, the CREB transcription factor, all participating in the expression of Nkx2.5 in cardiac progenitors.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Ectodermo/metabolismo , Factores de Crecimiento de Fibroblastos/fisiología , Proteínas de Homeodominio/metabolismo , Miocardio/metabolismo , Sistema Nervioso/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Xenopus/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Secuencia de Bases , Western Blotting , Cartilla de ADN , Factores de Crecimiento de Fibroblastos/metabolismo , Proteína Homeótica Nkx-2.5 , Proteínas de Homeodominio/genética , Inmunohistoquímica , Hibridación in Situ , Microinyecciones , Miocardio/citología , Miocardio/enzimología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Células Madre/enzimología , Células Madre/metabolismo , Factores de Transcripción/genética , Proteínas de Xenopus/genética , Xenopus laevis
3.
Nucleic Acids Res ; 36(12): 3916-25, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18511462

RESUMEN

Four myogenic regulatory factors (MRFs); MyoD, Myf-5, MRF4 and Myogenin direct muscle tissue differentiation. Heterodimers of MRFs with E-proteins activate muscle-specific gene expression by binding to E-box motifs d(CANNTG) in their promoters or enhancers. We showed previously that in contrast to the favored binding of E-box by MyoD-E47 heterodimers, homodimeric MyoD associated preferentially with quadruplex structures of regulatory sequences of muscle-specific genes. To inquire whether other MRFs shared the DNA binding preferences of MyoD, the DNA affinities of hetero- and homo-dimeric MyoD, MRF4 and Myogenin were compared. Similarly to MyoD, heterodimers with E47 of MRF4 or Myogenin bound E-box more tightly than quadruplex DNA. However, unlike homodimeric MyoD or MRF4, Myogenin homodimers associated weakly and nonpreferentially with quadruplex DNA. By reciprocally switching basic regions between MyoD and Myogenin we demonstrated dominance of MyoD in determining the quadruplex DNA-binding affinity. Thus, Myogenin with an implanted MyoD basic region bound quadruplex DNA nearly as tightly as MyoD. However, a grafted Myogenin basic region did not diminish the high affinity of homodimeric MyoD for quadruplex DNA. We speculate that the dissimilar interaction of MyoD and Myogenin with tetrahelical domains in muscle gene promoters may differently regulate their myogenic activities.


Asunto(s)
G-Cuádruplex , Proteína MioD/metabolismo , Factores Reguladores Miogénicos/metabolismo , Miogenina/metabolismo , Regiones Promotoras Genéticas , Aminoácidos/química , Sitios de Unión , Dimerización , Elementos E-Box , Miogenina/química , Unión Proteica , Factores de Transcripción TCF/metabolismo , Proteína 1 Similar al Factor de Transcripción 7
4.
FEBS J ; 287(1): 73-93, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31545558

RESUMEN

Physiological or pathological muscle disuse/inactivity or loss of the neural-muscular junction cause muscle atrophy. Atrophy-inducing conditions cause metabolic oxidative stress in the muscle tissue, activation of the ubiquitin-proteasome and of the autophagosome-lysosome systems, enhanced removal of the damaged proteins and organelles, and loss of muscle mass and strength. The signaling pathways that control these catabolic processes are only partially known. In this study, we systematically analyzed the role of p38α mitogen-activated protein kinase (MAPK) in denervation-mediated atrophy. Mice with attenuated activity of p38α (p38AF ) are partially protected from muscle damage and atrophy. Denervated (Den) muscles of these mutant mice exhibit reduced signs of oxidative stress, decreased unfolded protein response and lower levels of ubiquitinated proteins relative to Den muscles of control mice. Further, whereas autopahagy flux is inhibited in Den muscles of control mice, Den muscles of p38AF mice maintain normal level of autophagy flux. Last, muscle denervation affects differently the energy metabolism of muscles in normal and mutant mice; whereas denervation appears to increase mitochondrial oxidative metabolism in control mice, it elevates anaerobic glycolytic metabolism in p38AF mice. Our results indicate, therefore, that attenuation of p38α activity in mice protects Den muscles by reducing oxidative stress, lowering protein damage and improving the clearance of damaged mitochondria by autophagy.


Asunto(s)
Autofagia , Redes y Vías Metabólicas , Proteína Quinasa 14 Activada por Mitógenos/fisiología , Desnervación Muscular/métodos , Músculo Esquelético/patología , Atrofia Muscular/patología , Estrés Oxidativo , Animales , Femenino , Lisosomas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/patología , Músculo Esquelético/inervación , Músculo Esquelético/metabolismo , Atrofia Muscular/etiología , Atrofia Muscular/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Transducción de Señal , Ubiquitina/metabolismo
5.
Dev Biol ; 322(1): 86-94, 2008 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-18675264

RESUMEN

Dorsal-ventral patterning is specified by signaling centers secreting antagonizing morphogens that form a signaling gradient. Yet, how morphogen gradient is translated intracellularly into fate decisions remains largely unknown. Here, we report that p38 MAPK and CREB function along the dorsal-ventral axis in mesoderm patterning. We find that the phosphorylated form of CREB (S133) is distributed in a gradient along the dorsal-ventral mesoderm axis and that the p38 MAPK pathway mediates the phosphorylation of CREB. Knockdown of CREB prevents chordin expression and mesoderm dorsalization by the Spemann organizer, whereas ectopic expression of activated CREB-VP16 chimera induces chordin expression and dorsalizes mesoderm. Expression of high levels of p38 activator, MKK6E or CREB-VP16 in embryos converts ventral mesoderm into a dorsal organizing center. p38 MAPK and CREB function downstream of maternal Wnt/beta-catenin and the organizer-specific genes siamois and goosecoid. At low expression levels, MKK6E induces expression of lateral genes without inducing the expression of dorsal genes. Loss of CREB or p38 MAPK activity enables the expansion of the ventral homeobox gene vent1 into the dorsal marginal region, preventing the lateral expression of Xmyf5. Overall, these data indicate that dorsal-ventral mesoderm patterning is regulated by differential p38/CREB activities along the axis.


Asunto(s)
Tipificación del Cuerpo/fisiología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Mesodermo/embriología , Xenopus laevis/embriología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Tipificación del Cuerpo/efectos de los fármacos , Tipificación del Cuerpo/genética , Células Cultivadas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Genes Reporteros , Glicoproteínas/genética , Glicoproteínas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Inmunohistoquímica , Hibridación in Situ , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Mesodermo/citología , Mesodermo/metabolismo , Microinyecciones , Oligonucleótidos Antisentido/farmacología , Organizadores Embrionarios/efectos de los fármacos , Organizadores Embrionarios/embriología , Fosforilación/efectos de los fármacos , ARN/farmacología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética
6.
Nucleic Acids Res ; 35(21): 7087-95, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17942416

RESUMEN

Muscle differentiation and expression of muscle-specific proteins are initiated by the binding of heterodimers of the transcription factor MyoD with E2A proteins to E-box motif d(CANNTG) in promoters or enhancers of muscle-specific genes. MyoD homodimers, however, form tighter complexes with tetraplex structures of guanine-rich regulatory sequences of some muscle genes. In this work, we identified elements in MyoD that bind E-box or tetraplex structures of promoter sequences of the muscle-specific genes alpha7 integrin and sarcomeric Mitochondrial Creatine Kinase (sMtCK). Deletions of large domains of the 315 amino acids long recombinant MyoD indicated that the binding site for both E-box and tetraplex DNA is its basic region KRKTTNADRRKAATMRERRR that encompasses the three underlined clusters of basic residues designated R(1), R(2) and R(3). Deletion of a single or pairs of R triads or R111C substitution completely abolished the E-box-binding capacity of MyoD. By contrast, the MyoD deletion mutants Delta102-114, DeltaR(3), DeltaR(1)R(3) or DeltaR(2)R(3) maintained comparable tetraplex DNA-binding capacity as reflected by the similar dissociation constants of their protein-DNA complexes. Only deletion of all three basic clusters abolished the binding of tetraplex DNA. Implications of the binding of E-box and tetraplex DNA by non-identical MyoD elements are considered.


Asunto(s)
Elementos E-Box , G-Cuádruplex , Proteína MioD/química , Regiones Promotoras Genéticas , Aminoácidos Básicos/química , Animales , Antígenos CD/genética , Sitios de Unión , Forma Mitocondrial de la Creatina-Quinasa/genética , Cadenas alfa de Integrinas/genética , Ratones , Mutación , Proteína MioD/genética , Proteína MioD/metabolismo
7.
FEBS J ; 284(11): 1628-1630, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28581256

RESUMEN

TGFß signaling plays an important role in the differentiation of vascular smooth muscle cells (VSMCs), yet the mechanism remains largely unknown. The study by Pagiatakis et al. identifies the transcriptional coactivator TAZ as a mediator of TGFß signaling in VSMC-specific transcription. TAZ is involved in the formation of stable ternary complexes of SRF/Myocardin on CArG elements that are required for the transcription of VSMC structural genes.


Asunto(s)
Músculo Liso Vascular/citología , Factor de Respuesta Sérica/genética , Diferenciación Celular , Células Cultivadas , Regulación de la Expresión Génica , Músculo Liso , Miocitos del Músculo Liso/citología , Proteínas Nucleares/genética , Transactivadores/genética
8.
Int J Dev Biol ; 61(3-4-5): 337-345, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28621431

RESUMEN

Kirrel/Neph proteins are evolutionarily conserved members of the immunoglobulin superfamily of adhesion proteins. Kirrel3 is the mouse orthologue of Dumbfounded (Duf), a family member that regulates myoblast pre-fusion events in Drosophila. Yet, the role of Kirrel3 in mammalian myogenesis has not been demonstrated. Experiments performed here indicate that the mouse Kirrel3 protein regulates morphological changes of myoblasts that are required for their subsequent fusion into multinucleated myotubes. We show that Kirrel3 is transiently expressed at the tips of myocytes during early myoblast differentiation and that its expression is dependent on the myogenic transcription factor, MyoD. Kirrel3 is transported in vesicles into the plasma membrane and its extracellular domain is cleaved in a proteasome-dependent manner. C-terminal deletion mutant lacking most of the intracellular domain accumulates at cellular extensions, does not undergo extracellular cleavage and induces the formation of large cell aggregates. This result suggests that the processing of the extracellular domain is regulated by the receptor's intracellular region. Knock-down of Kirrel3 in primary muscle progenitor cells (MPCs) prevented spindle shape myocyte formation, and significantly reduced their fusion with other myocytes to form multinucleated myotubes. In addition, migration of Kirrel3-deficient MPCs was randomized relative to the directed migration of control MPCs. We conclude that mouse Kirrel3 is a myobast adhesion molecule which promotes the morphological change of rounded MPC to a spindle shaped myocyte that migrates in a directed fashion and participates in the tight interactions between myocytes prior to their fusion.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de la Membrana/metabolismo , Células Musculares/citología , Células Musculares/metabolismo , Músculo Esquelético/citología , Mioblastos/citología , Células 3T3 , Animales , Proteínas Portadoras , Comunicación Celular , Diferenciación Celular , Membrana Celular/metabolismo , Movimiento Celular , Proliferación Celular , Perfilación de la Expresión Génica , Células HEK293 , Humanos , Ratones , Morfogénesis , Desarrollo de Músculos , Mutación , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Dominios Proteicos , Transducción de Señal , Células Madre/citología
9.
F1000Res ; 6: 76, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28163911

RESUMEN

Adult muscle stem cells, originally called satellite cells, are essential for muscle repair and regeneration throughout life. Besides a gradual loss of mass and function, muscle aging is characterized by a decline in the repair capacity, which blunts muscle recovery after injury in elderly individuals. A major effort has been dedicated in recent years to deciphering the causes of satellite cell dysfunction in aging animals, with the ultimate goal of rejuvenating old satellite cells and improving muscle function in elderly people. This review focuses on the recently identified network of cell-intrinsic and -extrinsic factors and processes contributing to the decline of satellite cells in old animals. Some studies suggest that aging-related satellite-cell decay is mostly caused by age-associated extrinsic environmental changes that could be reversed by a "youthful environment". Others propose a central role for cell-intrinsic mechanisms, some of which are not reversed by environmental changes. We believe that these proposals, far from being antagonistic, are complementary and that both extrinsic and intrinsic factors contribute to muscle stem cell dysfunction during aging-related regenerative decline. The low regenerative potential of old satellite cells may reflect the accumulation of deleterious changes during the life of the cell; some of these changes may be inherent (intrinsic) while others result from the systemic and local environment (extrinsic). The present challenge is to rejuvenate aged satellite cells that have undergone reversible changes to provide a possible approach to improving muscle repair in the elderly.

10.
Mol Cell Endocrinol ; 252(1-2): 224-30, 2006 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-16644098

RESUMEN

Skeletal muscle development is regulated by extracellular growth factors that transmit largely unknown signals into the cell affecting the muscle-transcription program. One intracellular signaling pathway activated during the differentiation of myogenic cell lines is p38 mitogen-activated protein kinase (MAPK). As a result of modifying the activity of p38 in myoblasts, the pathway proved essential for the expression of muscle-specific genes. P38 affects the activities of transcription factors from the MyoD and MEF2 families and participates in the remodeling of chromatin at specific muscle-regulatory regions. P38 cooperates with the myogenic transcription factors in the activation of a subset of late-transcribed genes, hence contributing to the temporal expression of genes during differentiation. Recent developmental studies with mouse and Xenopus embryos, substantiated and further extended the essential role of p38 in myogenesis. Evidence exists supporting the crucial role for p38 signaling in activating MEF2 transcription factors during somite development in mice. In Xenopus, p38 signaling was shown to be needed for the early expression of Myf5 and for the expression of several muscle structural genes. The emerging data indicate that p38 participates in several stages of the myogenic program.


Asunto(s)
Envejecimiento/fisiología , Desarrollo de Músculos/fisiología , Músculo Esquelético/crecimiento & desarrollo , Proteínas Quinasas p38 Activadas por Mitógenos/fisiología , Animales , Diferenciación Celular , Humanos , Mesodermo/fisiología , Músculo Esquelético/citología , Transducción de Señal
11.
FEBS J ; 282(15): 2930-47, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26038288

RESUMEN

In Xenopus, animal cap (AC) cells give rise to ectoderm and its derivatives: epidermis and the central nervous system. Ectoderm has long been considered a default pathway of embryonic development, with cells that are not under the influence of vegetal Nodal signaling adopting an ectodermal program of gene expression. In the present study, we describe the involvement of the animally-localized maternal transcription factor myocyte enhancer factor (Mef) 2D in regulating the identity of AC cells. We find that Mef2D is required for the formation of both ectodermal lineages: neural and epidermis. Gain and loss of function experiments indicate that Mef2D regulates early gastrula expression of key ectodermal/epidermal genes in the animal region. Mef2D controls the activity of zygotic bone morphogenetic protein (BMP) signaling known to dictate the epidermal differentiation program. Exogenous expression of Mef2D in vegetal blastomeres was sufficient to induce ectopic expression of ectoderm/epidermal genes in the vegetal half of the embryo, when Nodal signaling was inhibited. Depletion of Mef2D caused a loss of AC cell adhesion that was rescued by the expression of E-cadherin or bone morphogenetic protein 4. In addition, expression of Mef2D in the prospective endoderm caused unusual aggregation of vegetal cells with animal cells in vitro and inappropriate segregation to other germ layers in vivo. Mef2D cooperates with another animally-expressed transcription factor, FoxI1e. Together, they regulate the expression of genes encoding signaling proteins and the transcription factors that control the regional identity of animal cells. Therefore, we describe a new role for the animally-localized Mef2D protein in early ectoderm specification, which is similar to that of the vegetally-localized VegT in endoderm and mesoderm formation.


Asunto(s)
Adhesión Celular/fisiología , Ectodermo/citología , Factores de Transcripción MEF2/fisiología , Xenopus/embriología , Animales , Linaje de la Célula , Gástrula/química , Transducción de Señal , Xenopus/genética
12.
FEBS Lett ; 569(1-3): 129-34, 2004 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-15225621

RESUMEN

The small GTPase RhoA regulates the expression of the myogenic transcription factor, MyoD, and the transcription of muscle-specific genes. We report that RhoA also affects the survival of differentiating myoblasts. Two signaling pathways, extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3-kinase (PI3-K)-Akt, are involved in myoblast survival. Here, we show that inhibition of RhoA prevents the phosphorylation of Akt, but does not affect the phosphorylation of ERK. Constitutive expression of an active form of Akt prevents apoptosis in myoblasts treated with the Rho inhibitor C3-transferase. These results indicate that RhoA functions to prevent myoblast death by inducing the PI3-K-Akt pathway.


Asunto(s)
Mioblastos/citología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Animales , Diferenciación Celular , Línea Celular , Supervivencia Celular , Células Clonales , Inducción Enzimática , Proteínas Proto-Oncogénicas c-akt , Proteínas Recombinantes/metabolismo , Transducción de Señal
13.
PLoS One ; 8(7): e69693, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23894525

RESUMEN

In Xenopus, specification of the three germ layers is one of the earliest developmental decisions occurring prior to gastrulation. The maternally-expressed vegetally-localized transcription factor VegT has a central role in cell autonomous specification of endoderm and in the generation of mesoderm-inducing signals. Yet, marginally-expressed transcription factors that cooperate with mesoderm-inducing signals are less investigated. Here we report that the transcription factors MEF2A and MEF2D are expressed in the animal hemisphere before mid-blastula transition. At the initiation of zygotic transcription, expression of MEF2D expands into the marginal region that gives rise to mesoderm. Knockdown of MEF2D delayed gastrulation movements, prevented embryo elongation at the subsequent tailbud stage and caused severe defects in axial tissues. At the molecular level, MEF2D knockdown reduced the expression of genes involved in mesoderm formation and patterning. We also report that MEF2D functions with FGF signaling in a positive feedback loop; each augments the expression of the other in the marginal region and both are necessary for mesodermal gene expression. One target of MEF2D is the Nodal-related 1 gene (Xnr1) that mediates some of MEF2D mesodermal activities. Chromatin immunoprecipitation analysis revealed that MEF2D associates with transcriptional regulatory sequences of the Xnr1 gene. Several MEF2 binding sites within the proximal promoter region of Xnr1 were identified by their in vitro association with MEF2D protein. The same promoter region was necessary but not sufficient to mediate MEF2D activity in a reporter gene assay. In sum, our results indicate that the MEF2D protein is a key transcription factor in the marginal zone acting in a positive feedback loop with FGF signaling that promotes mesoderm specification at late blastula stages.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción MEF2/metabolismo , Mesodermo/metabolismo , Transcripción Genética , Xenopus laevis/genética , Xenopus laevis/metabolismo , Animales , Tipificación del Cuerpo/genética , Embrión no Mamífero/metabolismo , Embrión no Mamífero/patología , Femenino , Factor 8 de Crecimiento de Fibroblastos/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Factores de Transcripción MEF2/genética , Mesodermo/embriología , Morfolinos/genética , Morfolinos/metabolismo , Unión Proteica , Transporte de Proteínas , Elementos de Respuesta , Transducción de Señal , Proteínas de Xenopus/genética , Xenopus laevis/embriología , Cigoto/metabolismo
14.
PLoS One ; 6(12): e29498, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22242125

RESUMEN

When mouse myoblasts or satellite cells differentiate in culture, the expression of myogenic regulatory factor, MyoD, is downregulated in a subset of cells that do not differentiate. The mechanism involved in the repression of MyoD expression remains largely unknown. Here we report that a stress-response pathway repressing MyoD transcription is transiently activated in mouse-derived C2C12 myoblasts growing under differentiation-promoting conditions. We show that phosphorylation of the α subunit of the translation initiation factor 2 (eIF2α) is followed by expression of C/EBP homology protein (CHOP) in some myoblasts. ShRNA-driven knockdown of CHOP expression caused earlier and more robust differentiation, whereas its constitutive expression delayed differentiation relative to wild type myoblasts. Cells expressing CHOP did not express the myogenic regulatory factors MyoD and myogenin. These results indicated that CHOP directly repressed the transcription of the MyoD gene. In support of this view, CHOP associated with upstream regulatory region of the MyoD gene and its activity reduced histone acetylation at the enhancer region of MyoD. CHOP interacted with histone deacetylase 1 (HDAC1) in cells. This protein complex may reduce histone acetylation when bound to MyoD regulatory regions. Overall, our results suggest that the activation of a stress pathway in myoblasts transiently downregulate the myogenic program.


Asunto(s)
Diferenciación Celular/genética , Proteína MioD/genética , Mioblastos/citología , Proteínas Represoras/metabolismo , Estrés Fisiológico , Factor de Transcripción CHOP/metabolismo , Transcripción Genética , Acetilación , Factor de Transcripción Activador 3/metabolismo , Animales , Biomarcadores/metabolismo , Línea Celular , Factor 2 Eucariótico de Iniciación/metabolismo , Regulación de la Expresión Génica , Histonas/metabolismo , Ratones , Desarrollo de Músculos/genética , Proteína MioD/metabolismo , Mioblastos/metabolismo , Miogenina/genética , Miogenina/metabolismo , Fosforilación , Unión Proteica/genética
15.
Methods Mol Biol ; 661: 409-20, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20811998

RESUMEN

The following chapter describes several methods involved in the detection of MAPK activities and phosphorylated proteins during early development of Xenopus laevis. The Xenopus embryo provides a powerful platform for biochemical studies. We describe here basic methods of embryo manipulations such as egg fertilization, embryo growth and maintenance, microinjection of capped RNA and antisense morpholino oligonucleotides (AMOs), and isolation of explants. In addition, we describe methods to detect phosphorylated proteins, to analyze kinase activity, and to interfere with signaling pathways. Immunohistochemical staining performed on whole embryos or on tissue sections is an additional method for the detection of phosphorylated proteins in the developing embryo. Approaches to activate or inhibit MAPK activities including the ectopic expression of mutated isoforms of MAPK kinase, or the incubation of embryo explants with pharmacological inhibitors are described. Finally, we describe an in vitro kinase assay specifically designed for the Xenopus embryo.


Asunto(s)
Pruebas de Enzimas/métodos , Sistema de Señalización de MAP Quinasas , Xenopus laevis/embriología , Xenopus laevis/metabolismo , Alelos , Animales , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Fertilización , Técnicas de Silenciamiento del Gen , Humanos , Immunoblotting , Inmunohistoquímica , Inmunoprecipitación , MAP Quinasa Quinasa 6/genética , Microcirugia , Oligonucleótidos Antisentido/genética , Ovulación , Adhesión en Parafina , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , ARN Mensajero/genética , Xenopus laevis/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/deficiencia , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
16.
J Biol Chem ; 283(34): 23224-34, 2008 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-18552402

RESUMEN

The proinflammatory cytokine, TNFalpha plays a major role in muscle wasting occurring in chronic diseases and muscular dystrophies. Among its other functions, TNFalpha perturbs muscle regeneration by preventing satellite cell differentiation. In the present study, the role of c-Jun N-terminal kinase (JNK), a mediator of TNFalpha, was investigated in differentiating myoblast cell lines. Addition of TNFalpha to C2 myoblasts induced immediate and delayed phases of JNK activity. The delayed phase is associated with myoblast proliferation. Inhibition of JNK activity prevented proliferation and restored differentiation to TNFalpha-treated myoblasts. Studies with cell lines expressing MyoD:ER chimera and lacking JNK1 or JNK2 genes indicate that JNK1 activity mediates the effects of TNFalpha on myoblast proliferation and differentiation. TNFalpha does not induce proliferation or inhibit differentiation of JNK1-null myoblasts. However, differentiation of JNK1-null myoblasts is inhibited when they are grown in conditioned medium derived from cell lines affected by TNFalpha. We investigated the induced synthesis of several candidate growth factors and cytokines following treatment with TNFalpha. Expression of IL-6 and leukemia inhibitory factor (LIF) was induced by TNFalpha in wild-type and JNK2-null myoblasts. However, LIF expression was not induced by TNFalpha in JNK1-null myoblasts. Addition of LIF to the growth medium of JNK1-null myoblasts prevented their differentiation. Moreover, LIF-neutralizing antibodies added to the medium of C2 myoblasts prevented inhibition of differentiation mediated by TNFalpha. Hence, TNFalpha promotes myoblast proliferation through JNK1 and prevents myoblast differentiation through JNK1-mediated secretion of LIF.


Asunto(s)
Regulación de la Expresión Génica , Factor Inhibidor de Leucemia/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Mioblastos/citología , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Ciclo Celular , Diferenciación Celular , Línea Celular , Proliferación Celular , Medios de Cultivo Condicionados/farmacología , Inhibidores Enzimáticos/farmacología , Ratones , Ratones Transgénicos , Modelos Biológicos
17.
Mol Pharmacol ; 70(4): 1395-405, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16847144

RESUMEN

In vivo screening of compounds for potential pharmacological activity is more advantageous than in vitro screening. In vivo screens eliminate the isolation of compounds that cannot cross biological membranes, are cytotoxic, or are not specific to the target. However, animal-based or even cell-based systems are usually expensive, time-consuming, and laborious. Here we describe the identification of inhibitors of the mitogen-activated protein kinase p38alpha via a high throughput screen using yeast cells. p38alpha is hyperactive in inflammatory diseases, and various indications suggest that its inhibition would reverse inflammation. However, there are currently no p38alpha inhibitors in clinical use. Because the human p38alpha imposes severe growth retardation when expressed in yeast, we screened a library of 40,000 randomly selected small molecules for compounds that would restore a normal growth rate. We identified two compounds; both share a structural motif of 4-benzylpiperidine, and both were shown to be efficient and selective p38alpha inhibitors in vitro. They were also active in mammalian cells, as manifested by their ability to reversibly inhibit myoblast differentiation. Thus, the yeast screen identified efficient and specific p38alpha inhibitors that are capable of crossing biological membranes, are not toxic, and function in mammalian cells. The rapid and cost-efficient high-throughput screening used here could be applied for isolation of inhibitors of various targets.


Asunto(s)
Proteína Quinasa 14 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Levaduras/fisiología , Secuencias de Aminoácidos , Animales , Diferenciación Celular , Línea Celular , Proliferación Celular , Evaluación Preclínica de Medicamentos , Fosfatasa 1 de Especificidad Dual , Estructura Molecular , Mioblastos/metabolismo , Mioblastos/fisiología , Fenotipo , Fosforilación , Proteína Fosfatasa 1 , Ratas , Especificidad por Sustrato , Factores de Tiempo , Levaduras/metabolismo
18.
Dev Biol ; 288(1): 73-86, 2005 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-16248994

RESUMEN

The p38 MAPK signaling pathway is essential for skeletal muscle differentiation in tissue culture models. We demonstrate a novel role for p38 MAPK in myogenesis during early Xenopus laevis development. Interfering with p38 MAPK causes distinct defects in myogenesis. The initial expression of Myf5 is selectively blocked, while expression of MyoD is unaffected. Expression of a subset of muscle structural genes is reduced. Convergent extension movements are prevented and segmentation of the paraxial mesoderm is delayed, probably due to the failure of cells to withdraw from the cell cycle. Myotubes are properly formed; however, at later stages, they begin to degenerate, and the boundaries between somites disappear. Significant apoptotic cell death occurs in most parts of the somites. The ventral body wall muscle derived from migratory progenitor cells of the ventral somite region is poorly formed. Our data indicate that the developmental defects caused by p38alpha-knockdown were mediated by the loss of XMyf5 expression. Thus, this study identifies a specific intracellular pathway in which p38 MAPK and Myf5 proteins regulate a distinct myogenic program.


Asunto(s)
Desarrollo de Músculos/fisiología , Músculo Esquelético/embriología , Músculo Esquelético/enzimología , Factor 5 Regulador Miogénico/biosíntesis , Proteínas Quinasas p38 Activadas por Mitógenos/fisiología , Animales , Apoptosis/fisiología , Tipificación del Cuerpo/fisiología , Ciclo Celular/fisiología , Músculo Esquelético/citología , Proteína MioD/biosíntesis , Proteína MioD/genética , Factor 5 Regulador Miogénico/genética , Fenotipo , Somitos/citología , Somitos/enzimología , Somitos/fisiología , Xenopus laevis
19.
J Biol Chem ; 280(29): 26805-12, 2005 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-15923190

RESUMEN

Myogenic transcription is activated by the binding of heterodimers of the basic helix-loop-helix proteins MyoD and E12 or E47 to a consensus E-box sequence, d(CANNTG), in promoter or enhancer regions of muscle-specific genes. Homodimers of MyoD bind E-box less tightly and are less efficient activators of transcription. Recent results from our laboratory (Yafe, A., Etzioni, S., Weisman-Shomer, P., and Fry, M. (2005) Nucleic Acids Res. 33, 2887-2900) indicate that regulatory sequences of several muscle-specific genes contain a disproportionate high content of guanine clusters that readily form hairpin and parallel-stranded unimolecular and bimolecular tetraplex structures. Here we have shown that homodimers of full-length recombinant MyoD formed complexes with bimolecular tetraplex structures of muscle-specific regulatory sequences but not with their double-stranded, hairpin, or unimolecular tetraplex forms. Preferential binding of homodimeric MyoD to bimolecular tetraplex DNA structures over E-box DNA was reflected by the 18.7-39.9-fold lower dissociation constants, Kd, of the MyoD-tetraplex DNA complexes. Conversely, MyoD-E47 heterodimers formed tighter complexes with E-box as indicated by their 6.8-19.0-fold lower Kd relative to complexes with bimolecular tetraplex DNA structures. Similarly, homodimers of the 60-amino acid basic helix-loop-helix domain of MyoD bound E-box more efficiently and tetraplex DNA less efficiently than homodimers of full-length MyoD. It might be that the favored binding of MyoD homodimers to tetraplex DNA structures lowers their ability to activate muscle-specific gene transcription, whereas the formation of MyoD-E47 heterodimers and their preferential binding to E-box DNA enhance transcription.


Asunto(s)
ADN/química , Proteínas Musculares/genética , Proteína MioD/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , ADN/metabolismo , Proteínas de Unión al ADN , Dimerización , Elementos E-Box , G-Cuádruplex , Humanos , Proteína MioD/química , Conformación de Ácido Nucleico , Unión Proteica , Factores de Transcripción , Transcripción Genética , Activación Transcripcional
20.
J Biol Chem ; 278(23): 21221-31, 2003 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-12637563

RESUMEN

During myogenesis, proliferating myoblasts withdraw from the cell cycle and are either eliminated by programmed cell death or differentiate into mature myotubes. Previous studies indicate that mitogen-activated protein kinase (MAPK) activity is significantly induced with the onset of terminal differentiation of C2 myoblasts. We have investigated the part played by the MAPK pathway in the differentiation of C2 myoblasts. Specific activation of MAPK by expression of an active Raf1-estrogen receptor chimera protein reduced significantly the number of myoblasts undergoing programmed cell death in the differentiation medium. Activation of Raf1 prevented the proteolytic activation of the proapoptotic caspase 9-protein during differentiation. The antiapoptotic function of Raf1 correlated with accumulation of the p21WAF1 protein resulting from its increased stability. Antisense expression of p21 was used to determine whether the p21WAF1 protein mediated the antiapoptotic activity of Raf1. Reduction of p21WAF1 protein in muscle cells abolished the antiapoptotic activity of the MAPK pathway. We conclude that MAPK contributes to muscle differentiation by preventing apoptotic cell death of differentiating myoblasts and that this activity is mediated by stabilization of the p21WAF1 protein.


Asunto(s)
Ciclinas/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Mioblastos/citología , Mioblastos/enzimología , Animales , Apoptosis/fisiología , Diferenciación Celular/fisiología , División Celular/fisiología , Supervivencia Celular/fisiología , Células Cultivadas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Ciclinas/genética , ADN sin Sentido , Expresión Génica , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Músculo Esquelético/citología , Músculo Esquelético/enzimología , Proteínas Proto-Oncogénicas c-raf/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA