Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cancer ; 125(14): 2409-2422, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31012964

RESUMEN

BACKGROUND: Over 96% of high-grade ovarian carcinomas and 50% of all cancers are characterized by alterations in the p53 gene. Therapeutic strategies to restore and/or reactivate the p53 pathway have been challenging. By contrast, p63, which shares many of the downstream targets and functions of p53, is rarely mutated in cancer. METHODS: A novel strategy is presented for circumventing alterations in p53 by inducing the tumor-suppressor isoform TAp63 (transactivation domain of tumor protein p63) through its direct downstream target, microRNA-130b (miR-130b), which is epigenetically silenced and/or downregulated in chemoresistant ovarian cancer. RESULTS: Treatment with miR-130b resulted in: 1) decreased migration/invasion in HEYA8 cells (p53 wild-type) and disruption of multicellular spheroids in OVCAR8 cells (p53-mutant) in vitro, 2) sensitization of HEYA8 and OVCAR8 cells to cisplatin (CDDP) in vitro and in vivo, and 3) transcriptional activation of TAp63 and the B-cell lymphoma (Bcl)-inhibitor B-cell lymphoma 2-like protein 11 (BIM). Overexpression of TAp63 was sufficient to decrease cell viability, suggesting that it is a critical downstream effector of miR-130b. In vivo, combined miR-130b plus CDDP exhibited greater therapeutic efficacy than miR-130b or CDDP alone. Mice that carried OVCAR8 xenograft tumors and were injected with miR-130b in 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) liposomes had a significant decrease in tumor burden at rates similar to those observed in CDDP-treated mice, and 20% of DOPC-miR-130b plus CDDP-treated mice were living tumor free. Systemic injections of scL-miR-130b plus CDDP in a clinically tested, tumor-targeted nanocomplex (scL) improved survival in 60% and complete remissions in 40% of mice that carried HEYA8 xenografts. CONCLUSIONS: The miR-130b/TAp63 axis is proposed as a new druggable pathway that has the potential to uncover broad-spectrum therapeutic options for the majority of p53-altered cancers.


Asunto(s)
MicroARNs/uso terapéutico , Mutación Missense , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Factores de Transcripción/genética , Activación Transcripcional/genética , Proteína p53 Supresora de Tumor/genética , Proteínas Supresoras de Tumor/genética , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Sitios de Unión , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Cisplatino/farmacología , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Humanos , Liposomas , Ratones , Ratones Desnudos , MicroARNs/administración & dosificación , MicroARNs/genética , MicroARNs/metabolismo , Invasividad Neoplásica/prevención & control , Isoformas de Proteínas/genética , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/metabolismo , Transfección , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Proc Natl Acad Sci U S A ; 111(5): E572-81, 2014 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-24449888

RESUMEN

The roles of microRNAs (miRNAs) and the miRNA processing machinery in the regulation of stem cell biology are not well understood. Here, we show that the p53 family member and p63 isoform, ΔNp63, is a transcriptional activator of a cofactor critical for miRNA processing (DGCR8). This regulation gives rise to a unique miRNA signature resulting in reprogramming cells to multipotency. Strikingly, ΔNp63(-/-) epidermal cells display profound defects in terminal differentiation and express a subset of markers and miRNAs present in embryonic stem cells and fibroblasts induced to pluripotency using Yamanaka factors. Moreover, ΔNp63(-/-) epidermal cells transduced with an inducible DGCR8 plasmid can differentiate into multiple cell fates in vitro and in vivo. We found that human primary keratinocytes depleted of ΔNp63 or DGCR8 can be reprogrammed in 6 d and express a unique miRNA and gene expression signature that is similar but not identical to human induced pluripotent stem cells. Our data reveal a role for ΔNp63 in the transcriptional regulation of DGCR8 to reprogram adult somatic cells into multipotent stem cells.


Asunto(s)
Regulación hacia Abajo/genética , Queratinocitos/metabolismo , Células Madre Multipotentes/citología , Fosfoproteínas/genética , Proteínas/genética , Proteínas de Unión al ARN/genética , Transactivadores/genética , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética , Adulto , Animales , Diferenciación Celular , Línea Celular , Linaje de la Célula , Proliferación Celular , Quimera , Embrión de Mamíferos/citología , Células Epidérmicas , Perfilación de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Queratinocitos/citología , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Células Madre Multipotentes/metabolismo , Proteína Homeótica Nanog , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Fosfoproteínas/deficiencia , Fosfoproteínas/metabolismo , Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción SOXB1/metabolismo , Transactivadores/deficiencia , Transactivadores/metabolismo , Factores de Transcripción/deficiencia , Factores de Transcripción/metabolismo , Transcripción Genética , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/metabolismo
3.
BMC Genomics ; 13: 278, 2012 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-22726614

RESUMEN

BACKGROUND: Avian influenza virus (AIV) outbreaks are worldwide threats to both poultry and humans. Our previous study suggested microRNAs (miRNAs) play significant roles in the regulation of host response to AIV infection in layer chickens. The objective of this study was to test the hypothesis if genetic background play essential role in the miRNA regulation of AIV infection in chickens and if miRNAs that were differentially expressed in layer with AIV infection would be modulated the same way in broiler chickens. Furthermore, by integrating with parallel mRNA expression profiling, potential molecular mechanisms of host response to AIV infection can be further exploited. RESULTS: Total RNA isolated from the lungs of non-infected and low pathogenic H5N3 infected broilers at four days post-infection were used for both miRNA deep sequencing and mRNA microarray analyses. A total of 2.6 M and 3.3 M filtered high quality reads were obtained from infected and non-infected chickens by Solexa GA-I Sequencer, respectively. A total of 271 miRNAs in miRBase 16.0 were identified and one potential novel miRNA was discovered. There were 121 miRNAs differentially expressed at the 5% false discovery rate by Fisher's exact test. More miRNAs were highly expressed in infected lungs (108) than in non-infected lungs (13), which was opposite to the findings in layer chickens. This result suggested that a different regulatory mechanism of host response to AIV infection mediated by miRNAs might exist in broiler chickens. Analysis using the chicken 44 K Agilent microarray indicated that 508 mRNAs (347 down-regulated) were differentially expressed following AIV infection. CONCLUSIONS: A comprehensive analysis combining both miRNA and targeted mRNA gene expression suggests that gga-miR-34a, 122-1, 122-2, 146a, 155, 206, 1719, 1594, 1599 and 451, and MX1, IL-8, IRF-7, TNFRS19 are strong candidate miRNAs or genes involved in regulating the host response to AIV infection in the lungs of broiler chickens. Further miRNA or gene specific knock-down assay is warranted to elucidate underlying mechanism of AIV infection regulation in the chicken.


Asunto(s)
Pollos/genética , Gripe Aviar/genética , Pulmón/virología , MicroARNs/genética , Transcriptoma , Animales , Pollos/virología , Secuenciación de Nucleótidos de Alto Rendimiento , Virus de la Influenza A/patogenicidad , Gripe Aviar/virología , Análisis por Micromatrices , Datos de Secuencia Molecular
4.
J Biol Chem ; 285(39): 30139-49, 2010 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-20630862

RESUMEN

MicroRNAs (miRNAs) are short, non-coding RNAs that target and silence protein coding genes through 3'-UTR elements. Evidence increasingly assigns an immunosuppressive role for miRNAs in immunity, but relatively few miRNAs have been studied, and an overall understanding of the importance of these regulatory transcripts in complex in vivo systems is lacking. Here we have applied multiple technologies to globally analyze miRNA expression and function in allergic lung disease, an experimental model of asthma. Deep sequencing and microarray analyses of the mouse lung short RNAome revealed numerous extant and novel miRNAs and other transcript classes. Similar to mRNAs, lung miRNA expression changed dynamically during the transition from the naive to the allergic state, suggesting numerous functional relationships. A possible role for miRNA editing in altering the lung mRNA target repertoire was also identified. Multiple members of the highly conserved let-7 miRNA family were the most abundant lung miRNAs, and we confirmed in vitro that interleukin 13 (IL-13), a cytokine essential for expression for allergic lung disease, is regulated by mmu-let-7a. However, inhibition of let-7 miRNAs in vivo using a locked nucleic acid profoundly inhibited production of allergic cytokines and the disease phenotype. Our findings thus reveal unexpected complexity in the miRNAome underlying allergic lung disease and demonstrate a proinflammatory role for let-7 miRNAs.


Asunto(s)
Asma/metabolismo , Interleucina-13/biosíntesis , MicroARNs/metabolismo , Animales , Asma/genética , Modelos Animales de Enfermedad , Humanos , Inflamación/genética , Inflamación/metabolismo , Interleucina-13/genética , Ratones , MicroARNs/genética
5.
BMC Genomics ; 12(1): 277, 2011 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-21627805

RESUMEN

BACKGROUND: In an important model for neuroscience, songbirds learn to discriminate songs they hear during tape-recorded playbacks, as demonstrated by song-specific habituation of both behavioral and neurogenomic responses in the auditory forebrain. We hypothesized that microRNAs (miRNAs or miRs) may participate in the changing pattern of gene expression induced by song exposure. To test this, we used massively parallel Illumina sequencing to analyse small RNAs from auditory forebrain of adult zebra finches exposed to tape-recorded birdsong or silence. RESULTS: In the auditory forebrain, we identified 121 known miRNAs conserved in other vertebrates. We also identified 34 novel miRNAs that do not align to human or chicken genomes. Five conserved miRNAs showed significant and consistent changes in copy number after song exposure across three biological replications of the song-silence comparison, with two increasing (tgu-miR-25, tgu-miR-192) and three decreasing (tgu-miR-92, tgu-miR-124, tgu-miR-129-5p). We also detected a locus on the Z sex chromosome that produces three different novel miRNAs, with supporting evidence from Northern blot and TaqMan qPCR assays for differential expression in males and females and in response to song playbacks. One of these, tgu-miR-2954-3p, is predicted (by TargetScan) to regulate eight song-responsive mRNAs that all have functions in cellular proliferation and neuronal differentiation. CONCLUSIONS: The experience of hearing another bird singing alters the profile of miRNAs in the auditory forebrain of zebra finches. The response involves both known conserved miRNAs and novel miRNAs described so far only in the zebra finch, including a novel sex-linked, song-responsive miRNA. These results indicate that miRNAs are likely to contribute to the unique behavioural biology of learned song communication in songbirds.


Asunto(s)
Corteza Auditiva/metabolismo , Pinzones/fisiología , Regulación de la Expresión Génica , MicroARNs/genética , Prosencéfalo/metabolismo , Vocalización Animal , Estimulación Acústica , Animales , Femenino , Sitios Genéticos , Masculino , MicroARNs/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ARN , Factores Sexuales
6.
Cell Rep ; 21(6): 1562-1573, 2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-29117561

RESUMEN

Ronin (THAP11), a DNA-binding protein that evolved from a primordial DNA transposon by molecular domestication, recognizes a hyperconserved promoter sequence to control developmentally and metabolically essential genes in pluripotent stem cells. However, it remains unclear whether Ronin or related THAP proteins perform similar functions in development. Here, we present evidence that Ronin functions within the nascent heart as it arises from the mesoderm and forms a four-chambered organ. We show that Ronin is vital for cardiogenesis during midgestation by controlling a set of critical genes. The activity of Ronin coincided with the recruitment of its cofactor, Hcf-1, and the elevation of H3K4me3 levels at specific target genes, suggesting the involvement of an epigenetic mechanism. On the strength of these findings, we propose that Ronin activity during cardiogenesis offers a template to understand how important gene programs are sustained across different cell types within a developing organ such as the heart.


Asunto(s)
Corazón/crecimiento & desarrollo , Proteínas Represoras/metabolismo , Animales , Bradicardia/metabolismo , Bradicardia/fisiopatología , Cardiomiopatías/metabolismo , Cardiomiopatías/fisiopatología , Inmunoprecipitación de Cromatina , Ecocardiografía , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Corazón/diagnóstico por imagen , Histonas/genética , Histonas/metabolismo , Proteína Homeótica Nkx-2.5/deficiencia , Proteína Homeótica Nkx-2.5/genética , Factor C1 de la Célula Huésped/genética , Factor C1 de la Célula Huésped/metabolismo , Metilación , Ratones , Ratones Noqueados , Microscopía Fluorescente , Cadenas Pesadas de Miosina/deficiencia , Cadenas Pesadas de Miosina/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Represoras/genética , Sitio de Iniciación de la Transcripción
7.
PLoS One ; 8(2): e50564, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23418415

RESUMEN

While breast milk has unique health advantages for infants, the mechanisms by which it regulates the physiology of newborns are incompletely understood. miRNAs have been described as functioning transcellularly, and have been previously isolated in cell-free and exosomal form from bodily liquids (serum, saliva, urine) and tissues, including mammary tissue. We hypothesized that breast milk in general, and milk fat globules in particular, contain significant numbers of known and limited novel miRNA species detectable with massively parallel sequencing. Extracted RNA from lactating mothers before and following short-term treatment with recombinant human growth hormone (rhGH) was smRNA-enriched. smRNA-Seq was performed to generate 124,110,646 36-nt reads. Of these, 31,102,927 (25%) exactly matched known human miRNAs; with relaxing of stringency, 74,716,151 (60%) matched known miRNAs including 308 of the 1018 (29%) mature miRNAs (miRBase 16.0). These miRNAs are predicted to target 9074 genes; the 10 most abundant of these predicted to target 2691 genes with enrichment for transcriptional regulation of metabolic and immune responses. We identified 21 putative novel miRNAs, of which 12 were confirmed in a large validation set that included cohorts of lactating women consuming enriched diets. Of particular interest, we observed that expression of several novel miRNAs were altered by the perturbed maternal diet, notably following a high-fat intake (p<0.05). Our findings suggest that known and novel miRNAs are enriched in breast milk fat globules, and expression of several novel miRNA species is regulated by maternal diet. Based on robust pathway mapping, our data supports the notion that these maternally secreted miRNAs (stable in the milk fat globules) play a regulatory role in the infant and account in part for the health benefits of breast milk. We further speculate that regulation of these miRNA by a high fat maternal diet enables modulation of fetal metabolism to accommodate significant dietary challenges.


Asunto(s)
Lactancia/metabolismo , Lípidos , MicroARNs/metabolismo , Leche Humana/metabolismo , Transcriptoma , Adulto , Femenino , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactancia/genética , MicroARNs/genética
8.
Horm Cancer ; 2(3): 182-9, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21761344

RESUMEN

Glucocorticoids (GCs) are widely used in the treatment of hematological malignancies such as multiple myeloma. However, the development of resistance to GCs limits their clinical utility. Response to GCs is dependent on an active glucocorticoid receptor, GR-α, expressed at wild-type levels in the GC-sensitive cell line (MM.1S). GC-resistant derivative cell lines MM.1Re and MM.1RL display significant downregulation of GR-α transcripts. In this study, we report that a luciferase reporter containing the 3'-UTR of GR-α is significantly repressed in MM.1R cells when compared to MM.1S cells, suggesting that one or several microRNAs that are upregulated in MM.1R maybe in part responsible for the downregulation of the GR-α transcript. To examine posttranscriptional mechanisms of GR regulation, we examined miRNAs that have complimentary binding sites in the 3'-UTR of GR-α and found miR-130b, miR-181a, and miR-636 to be differentially expressed between GC-sensitive and GC-resistant MM.1 cell lines. Overexpression of miR-130b in MM.1S cells results in decreased expression of endogenous GR protein and decreased activity of the luciferase reporter. In addition, in MM.1S cells, the downstream GC response of glucocorticoid-induced leucine zipper induction is decreased by the overexpression of miR-130b, and further miR-130b inhibits GC-induced apoptosis and causes resistance to GCs.


Asunto(s)
Resistencia a Antineoplásicos/genética , Regulación de la Expresión Génica/genética , Glucocorticoides/uso terapéutico , MicroARNs/genética , Mieloma Múltiple/genética , Receptores de Glucocorticoides/biosíntesis , Línea Celular , Expresión Génica , Humanos , Immunoblotting , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/metabolismo , Reacción en Cadena de la Polimerasa , Receptores de Glucocorticoides/genética , Transcripción Genética
9.
Cancer Res ; 71(11): 3841-51, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21498633

RESUMEN

MYCN is a major driver of neuroblastoma tumorigenesis and MYCN amplification is the worst prognostic indicator of aggressive NB. To identify potentially therapeutic tumor suppressor microRNAs for aggressive NB, we utilized a conditional MYCN system to simulate MYCN-amplified and nonamplified tumor types and performed a genome-wide search for MYCN target microRNA promoters differentially repressed under high MYCN conditions. We identified 20 gene promoters hosting 30 microRNAs that were directly bound and differentially regulated by MYCN. Eleven of these genes showed significant clinical correlations for neuroblastoma with 4 genes linked with better survival and 7 genes linked with poor survival. Surprisingly, expression analysis of host genes and microRNAs demonstrated that 8 of 11 pairs were repressed by high levels of MYCN regardless of the clinical correlation of the host gene. We therefore predicted these intronic microRNAs would be tumor suppressors. In fact, detailed gain of function studies for two miRs, miR-591 and miR-558, confirmed potent tumor suppressive effects for miR-591 in orthotopic neuroblastoma xenografts. However, miR-558 markedly increased colony formation, proliferation, and tumor growth in vivo. Our data reveal host-gene independent functions of MYCN-target microRNAs and demonstrate that MYCN represses both tumor suppressive and proproliferative microRNAs.


Asunto(s)
Genes Supresores de Tumor , MicroARNs/genética , Neuroblastoma/genética , Proteínas Nucleares/genética , Proteínas Oncogénicas/genética , Animales , Línea Celular Tumoral , Inmunoprecipitación de Cromatina/métodos , Femenino , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo , Humanos , Ratones , Ratones Desnudos , MicroARNs/biosíntesis , Proteína Proto-Oncogénica N-Myc , Neuroblastoma/metabolismo , Neuroblastoma/patología , Proteínas Nucleares/biosíntesis , Proteínas Oncogénicas/biosíntesis , Pronóstico , Regiones Promotoras Genéticas , Trasplante Heterólogo , Células Tumorales Cultivadas
10.
PLoS One ; 5(3): e9637, 2010 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-20224791

RESUMEN

MicroRNAs (miRNAs) are small non-coding RNAs that mediate post-transcriptional gene silencing. Over 700 human miRNAs have currently been identified, many of which are mutated or de-regulated in diseases. Here we report the identification of novel miRNAs through deep sequencing the small RNAome (<30 nt) of over 100 tissues or cell lines derived from human female reproductive organs in both normal and disease states. These specimens include ovarian epithelium and ovarian cancer, endometrium and endometriomas, and uterine myometrium and uterine smooth muscle tumors. Sequence reads not aligning with known miRNAs were each mapped to the genome to extract flanking sequences. These extended sequence regions were folded in silico to identify RNA hairpins. Sequences demonstrating the ability to form a stem loop structure with low minimum free energy (<-25 kcal) and predicted Drosha and Dicer cut sites yielding a mature miRNA sequence matching the actual sequence were considered putative novel miRNAs. Additional confidence was achieved when putative novel hairpins assembled a collection of sequences highly similar to the putative mature miRNA but with heterogeneous 3'-ends. A confirmed novel miRNA fulfilled these criteria and had its "star" sequence in our collection. We found 7 distinct confirmed novel miRNAs, and 51 additional novel miRNAs that represented highly confident predictions but without detectable star sequences. Our novel miRNAs were detectable in multiple samples, but expressed at low levels and not specific to any one tissue or cell type. To date, this study represents the largest set of samples analyzed together to identify novel miRNAs.


Asunto(s)
Genitales Femeninos/metabolismo , Genitales Femeninos/fisiología , MicroARNs/metabolismo , Neoplasias Ováricas/metabolismo , Ovario/metabolismo , Análisis de Secuencia de ADN/métodos , Línea Celular , ADN Complementario/metabolismo , Femenino , Técnicas Genéticas , Humanos , Conformación de Ácido Nucleico , Reacción en Cadena de la Polimerasa , Ribonucleasa III/metabolismo , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA